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Infinite Particle Physics 
 
Chapter 2 - The Quantitative Aspects Of Defect-Pairs  
 
 
In this chapter, I show the derivation of an equation yielding the mass of defect-pairs 
vs. defect spacings, and the subsequent derivation of equations for calculating the 
mass-deficits of paraxial and diagonal bonds vs. bond spacings (i.e. the strong-force 
bonds).  These equations, along with insights into "charge-exchanges" and "slants", give 
us sufficient clues to discern the structures of hadrons and nuclei, and to validate these 
structures with precise calculations. 
 
 
Why Defect-Pairs Are Of Vital Importance To IPP 
 

• They permit us to determine the size of ECEs. 
 

• They permit us to visualize the structures of, and draw accurate to scale 3-D 
representations of pions, kaons, nucleons, and all the other meson and baryon 
resonances that have been inferred from high-energy particle experiments.  

 
• They provide quantitative proof of IPP's validity, since the masses of defect-pairs 

clusters can be determined.  Although one confronts a giant conundrum in 
attempting to correlate defect-pair clusters of various defect-spacings with 
known particles and resonances, this puzzle gradually yields, when one can 
compare the calculated values of these clusters to experimental values, 
particularly when correct guesses often give correlations within ±0.01%. 

 
• They yield a simple concept for the strong force: mass-cancellation bonds 

resulting from mutual cancellation of a portion of the residual 
expansion/contraction distortion surrounding adjacent defect-pairs.  These 
bonds have quantized spacings, and, thus, have calculable mass-deficits; this 
allows us to infer the structures of nuclei (and complex resonances), and 
(eventually, assuming further development) to calculate all of their mass-deficits. 

 
• They permit us to understand the short range of the strong force, because the 

structures of defect-pairs make clear that mass-cancellation bonding requires 
precise geometric orientation of the pairing axes of the two interacting defect-
pairs. 

 
• They provide structural insight into the concept of charge-exchanges, which is 

essential for understanding the masses & relative lifetimes of various defect-pair 
clusters, and for understanding how defects metamorphose into other defects in 
particle decays. 

 
With these goals in mind, let us begin our detailed study: 
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Some Basics Of Defect-Pair Formation 
 
Defect-pairs can form only in regions of undedicated shrinkage, where ECEs have been 
squeezed more tightly together by cancellations of oppositely-directed momentum or 
photons, or by annihilation of impinging matter & antimatter.  The momentary close-
packing of ECEs resulting from these collisions will collapse any voids in the vicinity 
into structures which have orthogonal regions of expansion and contractions.  Any two 
of these c-void structures, whose centers are in cardinal directions from each other, will 
tend to collapse in such a manner that their regions of contraction and expansion are 
mutually canceling.   This distortion-canceling arrangement of two c-voids is called a 
defect-pair. 
 
It is important to perceive that the formation of defect-pairs does not necessarily require 
the local presence of two uncollapsed voids.  In fact, we can infer that they most often 
result from the collapse and pairing of void/excess pairs, which are certain to be 
produced in abundance by the turbulence existing at the center of this undedicated 
shrinkage.  We can speculate that the collapse of a nearby void defect can induce the 
transmutation of a cardinally orientated excess defect into a c-void structure, because 
the c-void structure will be energetically favored in a condensed lattice.  Here's why: the 
mass-energy of the lightest c-void structure (1/2 the mass of a neutral pion, ≈ 136/2 
MeV) is greater than the mass-energy of an excess defect (1/2 the mass of QCD's muon, 
≈ 105/2 MeV). 
 
The transmutation of the "wedged" form of the excess defect into the "collapsed" form of 
the c-void defect requires just a slight rearrangement of the surrounding ECEs, and this 
is driven by the presence of face-diagonal zones of lattice expansion & contraction 
propagating out from the cardinally aligned void's collapse.  Any voids and excesses 
which fail to form defect-pairs will simply annihilate each other, and contribute their 
annihilation mass-energy, either to additional defect-pair formation, or toward 
separation momentum of those defect-pairs already created. 
 
 
Some Basics Of Defect-Pair Clustering 
 
When multiple defect-pairs form around a center of undedicated shrinkage, they will 
tend to form in a manner which most efficiently utilizes this shrinkage.  Thus, we 
should expect to find arrangements of defect-pairs whose axes are mutually orthogonal, 
and whose c-void defects are nearly equidistant from the center of mass-energy of this 
shrinkage, thereby producing rather symmetrical planar, or 3-D structures.  We should 
also expect that these cross-like defect-pair arrangements will perturb the 
expansion/contraction fields of each other, thereby increasing their equilibrium defect 
spacings. 
 
 
The Structure Of A Collapsed Void Defect (Hereafter C-Void) 
 
An ideal way to explain how c-voids mate to form defect-pairs would be through 
animated computer graphics, but, alas, I lack this capability.  What I can offer, instead, 
is a 3-D photograph of a Q-tip model of IPP's space, into which I have induced a c-void 
distortion pattern by the simple action of clamping together two face-diagonally adjacent 
nodes of this two-polarity lattice.  You can see the structure of this c-void distortion 
pattern by examining the two photographs, below, using the plastic 3-D viewer included 
with this publication: 
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Fig. 2-1 C-Void Pattern Viewed Normal to its Plane of Symmetry 
 

 
 
 
 

Fig. 2-2 C-Void Pattern Viewed Parallel to its Plane of Symmetry 
 

 
 



 

2 - 4       © 2001 Infinite Particle Physics, LLC 

Here is how to interpret these pictures: Each light-colored node (i.e. where six light-
colored Q-tips ends are joined together) represents the center of a plus ECE, each dark-
colored node, the center of a minus ECE.    The fixed length of the Q-tips connecting 
these nodes assures that opposite-polarity nodes must remain a constant distance 
apart, regardless of how the lattice is distorted; hence, this model faithfully represents 
IPP's concept of a lattice of spherical ECE particles brought into contact by external 
pressure. 
 
*Note: This model doesn't show the distortions produced by the mutual attractions & repulsions of ECEs in 
response to the defect's charge.  You will have to use your imagination to add this effect. 
 
 
We Define "Rays", And Explain Their Significance 
 
Looking at the two clamped dark nodes at the pattern center in Fig. 2-1, you will notice 
four curved lines of alternating dark and light nodes, radiating outwardly.  We shall call 
these four curving lines, rays, in subsequent discussions.  These four curves constitute 
two pairs of rays heading in opposite directions.  Each ray heads initially at a 30 degree 
angle to a lattice face-diagonal, but each pair of rays rapidly curves in such a way as to 
become asymptotic to orthogonal cardinal lattice directions.  If you look at Fig. 2-2, you 
will see that all of these four rays lie in a single cardinal plane of the space lattice.  IPP 
calls this plane, the plane of collapse.    
 
You will notice that the collapse of a void entails a movement of one of the twelve ECEs 
which lie one face-diagonal adjacent to the void.  IPP terms this moving ECE, the 
translocating ECE. Its movement of half a face-diagonal toward the precursor void, 
induced by local undedicated shrinkage, provokes the rearrangement of surrounding 
ECEs into the c-void structure of Figs. 2-1 & 2-2. 
 
 
Infinite Shrinkage Required For A Lone C-Void Defect 
 
I would like for you to notice that, as these rays approach the outer planes of the model, 
they create conical depressions, and it is quite obvious that succeeding cardinal planes 
in each of the four orthogonal directions will continue to bear these conical depressions 
to infinity.  Since these "cones" distort the lattice into a more rhombic form with higher 
ECE density, we see that forming a stable c-void pattern would require an infinite 
amount of pre-existing shrinkage.  Thus, we can surmise that the lone c-void pattern 
will not be produced in high-energy experiments!  Like QCD's quarks, IPP's c-voids have 
no separate identity*. 
 
* Lone c-voids can exist, however, as a partially formed, transient phenomenon, when relativistic voids 
interact with protons, and other hadron particles, during a close approach.  In these encounters, the 
relativistic void's momentum can momentarily convert to undedicated shrinkage, which causes the void to 
collapse, and, thereby, gain enough mass to slow its velocity, so that its ±1/2e charge can cause a noticeable 
change in the proton's trajectory.  This is IPP's explanation of so-called "neutral current" interactions, which 
are currently interpreted as an exchange of a Z particle (by QCD).  
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Pairing Of C-Voids Leads To Finite Shrinkage Requirements 
 
So why are we interested in c-voids?  Because pairing of adjacent c-voids removes the 
requirement for infinite amounts of pre-existing shrinkage!  Let us dig deep into the 
nature of the c-void distortion patterns to see why paired c-voids (hereafter called defect-
pairs) can have finite shrinkage requirements:    
 
 
A C-Void Has Diagonal Zones Of Contraction & Expansion 
 
Please look carefully, now, at the bottom cardinal plane of Fig. 2-1, in the vicinity of the 
"cone".  You will see that this plane is warped, such that the ECEs to the left of the 
"cone" are noticeably extended relative to those to the right.  Now, look successively at 
the other three outside planes; you will notice that these planes are warped similarly, 
except that adjacent planes have opposite high and low zones.  We can say, then, that 
this cubical section of the lattice appears to be expanded to the upper left and lower 
right, and contracted to the upper right and lower left.  You will notice, of course, that 
these disparities are largest near the "cones" at the center of the four cube faces, and 
diminish progressively both toward the cube vertices, and toward the other two faces of 
this cubical section of the space lattice.  (It may help, at this point, to look at Fig. 2-2, 
which shows the same pattern rotated 90 degrees.  You will want to notice in this 
perspective that analogous zones of expansion and contraction also exist normal to the 
plane of rearrangement.) 
 
 
Maximum Contraction/Expansion Is In Vicinity Of Rays 
 
So, we see that the c-void distortion pattern has zones of contraction centered about one 
lattice face-diagonal passing through the pattern center in the plane of rearrangement, 
and zones of expansion centered about the orthogonal lattice face-diagonal.  Yet we 
should notice something odd about this contraction and expansion: although centered 
about these face-diagonal lines, the contraction and expansion are actually at a 
minimum in the vicinity of these face-diagonals, and reach their maximum values only 
in the vicinity of the four rays, at the contraction/expansion boundaries.  It is, of 
course, the curvature of the rays which produces this step-change from contraction to 
expansion, so we should not be surprised to find that both are at a maximum in the 
vicinity of the rays. 
 
Now let's look at stereo photos of paired c-voids, Figs. 2-3 & 2-4. 
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Fig. 2-3 7ü Defect-Pair Viewed Normal to Pairing Axis 
 

 
 
 
 

Fig. 2-4 7ü Defect-Pair Viewed Parallel to Pairing Axis 
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Why Paired C-Voids Seek Cardinal Alignments 
 
The step change from expansion to contraction in the vicinity of the rays is what 
assures that the centers of paired c-voids are in cardinal lattice directions from each 
other.  Let's look at Fig. 2-4 to see why this is true:  Notice that the expansion rays of 
one defect lie in the same cardinal plane as the contraction rays of the other, and vice 
versa.   (This results, of course, from the orthogonal relationship between the expansion 
& contraction axes of the two defects.)  Because these oppositely directed rays lie in the 
same plane, what happens is that the downward tug of the two contraction rays of each 
c-void is opposed by the upward thrust of the two expansion rays of the other.  You will 
see that this mutually canceling interaction is effected along parallel cardinal lines of 
alternating-polarity ECEs, in such a way that the spacing between defect pairs is 
immaterial to this step-function canceling effect.  Here is why c-voids always pair in 
precisely cardinal directions from each other. 
 
If we had the means to follow the progression of this canceling interaction outwardly 
from the pattern center, we would expect the "cones" produced by the rays to diminish 
rapidly in amplitude, until they essentially vanish.  It is the gradual "erasing" of these 
"cones" which causes paired c-voids to have a finite mass. 
 
 
It Takes Three Parameters To Specify A C-Void 
 
Since c-voids can have plus or minus charge (±1/2e), and can collapse in all three 
cardinal planes of the lattice, and in two different face-diagonal directions in each plane, 
we require three parameters to describe them.  These are: its polarity, the orientation in 
space of its plane of collapse, and the face-diagonal direction of its axis of contraction 
(denoted in IPP as left-slant, or right-slant (L-slant, or R-slant).  Its polarity is determined 
by the polarity of the void which collapses, and both its plane of collapse and its slant 
are determined by the face-diagonal direction (any of twelve) from which the trans-
locating ECE moves toward the precursor void.  All of these parameters are important to 
specifying the geometry of clustered defect-pairs.  The c-void polarity and plane of 
collapse are self-evident, but the slant-forms of defect-pair clusters have some subtleties 
which require three-dimensional drawings to reveal: 
 

Fig. 2-5  "Lattice-Form" Diagrams of Slant Types 
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In these "lattice-form" diagrams, the 1üx1ü squares in perspective (IPP term, "tabs") 
show the plane of collapse of the various c-voids, in which the seven symbols diagonally 
across this square show the "slant" (i.e. the direction of the axis of contraction) of each 
defect.  The center symbol of these seven symbols shows the c-void location of the 
translocating ECE; the other six symbols do not represent ECEs, but are added merely to 
reveal the direction of the axis of contraction.  The lines with alternating symbols 
spaced 1ü apart connecting these squares reveal the spacings of the paired defects, and 
allow you to perceive the geometrical relationships of the clustered defect-pairs.  Notice, 
however, that these diagrams fail to show the ECE displacements of the c-void 
distortion patterns. 
 
 
Avoiding Confusion In Slant Designations 
 
Since each defect-pair obviously requires c-voids with opposite slant directions, the 
terms, "R-slant" & "L-slant", require a specific point of reference to become meaningful.  
Here's how to make sense of them:  Always imagine that you are viewing each c-void 
from the particle center with your two eyes always parallel to the plane defined by the 
two orthogonal defect-pairs.  As you rotate your gaze from one tab to another, look to 
see which upper corner of the tab is the termination of the seven symbols defining the 
axis of contraction.  Those which terminate in the upper left will be designated, "L-
slant"; in upper right, "R-slant".   If all the tabs have the same slant as you rotate your 
gaze, this two defect-pair structure will be termed, S-slant; if the slants alternate, we 
term this, A-slant. 
 
It is important to perceive that the slant designation of a particular tab does not change 
if you stand on your head.  Therefore, these slant designations, as we have defined 
them, are unambiguous, for a two-defect-pair particle, so we can refer to the upper S-
slant neutral kaon as the L-slant form, and the lower one as the R-slant form.  
 
However, ambiguity arrives when we consider three-defect-pair particles.  Here, when 
we switch our viewpoint from one two-defect-pair sub-component to another, the slant 
designation reverses for the tabs common to the two viewpoints.  Fortunately, there are 
only two distinct slant structures possible for these clusters, one in which all the two-
defect-pair sub-components are A-slant, and one in which two are S-slant and one is A-
slant.  IPP terms the first type, T-slant, because the slants are configured like the edges 
of a tetrahedron; the second type is termed, M-slant, for mixed slants. 
 
There are obviously other permutations of the structures shown in Fig. 2-5.  There are 
A-slant & S-slant forms which differ in the cardinal directions of the pairing axes, T-
slant & M-slant forms with reverse slants, and M-slant forms in which the A-slant sub-
component takes other cardinal directions.  These permutations will be useful in 
explaining spins, strangeness, and other things. 
 
 
What Determines The Slant Of C-Voids? 
 
The answer to this question is: chance and ambience.  Chance controls the slant 
direction of the first void to collapse; the expansion & contraction influence (ambience) 
of this first c-void assures that the c-void which pairs with it will have opposite slant.  
When defect-pairs form orthogonal to this first defect-pair, chance may again control 
slant, but the two possibilities, "same-slant" (S-slant) and "alternate-slant" (A-slant), 
have different structural stability, which is IPP's explanation for the observed different 
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half-lives of 0
LK  & 0

SK .   When three defect-pairs form a cluster in which the three 
pairing axes are mutually orthogonal, chance will determine whether, T-slant or M-
slant structures are formed.  Again, these two structural types have different stabilities.  
T-slant forms are stable (protons & antiprotons), or have long half-life (neutron), while 
the M-slant forms (kaon resonances) have very brief existence. 
 
Let's shift our focus, now, toward our goal of calculating the masses of defect-pairs.  We 
need these preliminary insights: 
 
 
How Much C-Void Shrinkage Is Canceled In Defect-Pairing? 
 
It should be evident that pairing requires spaced c-void defects, because it would not be 
possible to develop opposite directions of expansion and contraction in immediately 
adjacent defects.  Hence, in pairing, there will be uncanceled residues of shrinkage, due 
to the fact that each defect sees the inverse-square depreciated expansion and 
contraction of the other.  However, in the space beyond the paired defects, this disparity 
of the expansion and contraction contributions from the two defects will rapidly 
diminish to a negligible amount, so distant c-void shrinkages will be almost completely 
canceled.  Since IPP asserts that spherical shrinkage is distributed in equal radial 
increments to infinity, we can infer that nearly all the individual shrinkages of paired c-
void defects is canceled. 
 
 
How Does The Residual Shrinkage Vary With C-Void Spacings? 
 
We are interested, though, in the infinitesimal fraction of shrinkage which is not 
canceled.  How should this residual shrinkage vary with the spacing of the two defects?  
The following chain of reasoning leads to a crude understanding:  
 
Because the interacting expansion/contraction patterns of the two defects are precisely 
equal, and are centered about the two defects, the cancellation is complete in the mid-
plane between the defects, regardless of their spacing.  In successive planes on either 
side of the mid-plane, the expansion-contraction displacements become disparate, and 
fail to cancel completely.  Notice, though, that the degree of disparity increases more 
rapidly with closer spaced defects, and less rapidly with more widely spaced ones.  
Thus, although the number of disparate elements in the cancellation pattern between 
the defects increases as the cube of their spacing, the degree of disparity (failure of 
cancellation) in successive shells increases as an inverse function of their spacing.  The 
resultant effect of these two opposing tendencies is for the residual shrinkage to 
increase as the square of the defect spacing. 
 
This simple relationship may be complicated by mutual electrostatic influence.  Because 
of their charge of ± 1/2e, each of the paired defects creates electrostatic displacements 
in the principal plane of the other.  The effects of these displacements will be to "pucker" 
these principal planes, so that they become slightly more close-packed.  Also, the 
central ECEs move slightly apart, or together, depending on whether the defects are 
like-charge, or unlike, these effects being proportional to 1/d².   Just how this 
perturbation will alter the cancellation process is difficult to analyze, but the necessity 
for some second-order compensation is confirmed in the empirical relationship of mass 
vs. defect-pair spacing, derived next. 
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Discovering The Masses Of Defect-Pairs 
 
This Analysis Is Based Upon Four Assumptions 
 

1) Paired c-voids have quantized spacings, with even lattice spacings for opposite-
charge c-voids, and odd lattice spacings for like-charge c-voids.  This follows 
directly from the requirement that paired c-voids be aligned in cardinal lattice 
directions, and be of opposite slant. 

 
2) The expansion and contraction zones of the c-void defects are largely canceled by 

the pairing process.  Since both expansion and contraction are radially 
spreading phenomena, we may assume that the cancellation process is governed 
by the inverse-square law: hence, cancellation is proportional to 2d/1 , where d 
is the separation of the two centers of the paired c-void defects.      

 
3) The residual mass of the pair is inversely proportional to the amount of 

cancellation.  Thus, we may say that the mass, m, of a defect-pair is 
proportional to 2d , or: 

 

Equation 1: 
2d

k
m =  

 
However, we should expect some change in the constant, K, as a function of 
defect spacings, due to changes in cancellation efficiency and changing 
electrostatic interactions of the paired defects.  This influence may cause K to 
differ between even and odd spaced defect-pairs in an increasing manner as the 
defects get closer together. 

 
4) Defect-pairs in a cluster will tend to adopt larger defect-spacings than defect-

pairs in isolation. When defect-pairs cluster together, their c-voids will interact 
to produce inverse-square aberrations of each other’s expansion-contraction 
distortion patterns.  These aberrations may prevent pairing at close spacings, 
but, since they lessen in an inverse-square manner, they may not interfere with 
the pairing of c-voids at larger defect spacings. 

 
Using these clues, we can compute the average spacings of the component defect-pairs 
of various particles, provided we can guess their numbers of defect-pairs.  Then, the mix 
of even and odd spaced defect-pairs can be inferred from each particle's charge. 
 
 
Choosing The Number Of Defect-Pairs In The Most Stable Hadrons 
 
The simplest assumption we can make is that each major class of hadrons differs from 
the next lighter mass group by having one more defect-pair: 
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Table 2-1 
 

Particle Class # of Defect-Pairs 
pions 1 
kaons 2 

nucleons 3 
Sigma/lambda* 4 
cascade (xi) 5 

omega 6 
 
* I include the hyperons in this table to show the simplicity of my assumptions, even though I don't use them 
in this analysis. 
 
Because these particles are the most stable of all the hundreds of particles and 
resonances, we should look for geometries which will lend stability to the clusters.  
Specifically, we should look for arrangements which create the simplest and most 
spherical shrinkage patterns.  What immediately comes to mind are arrangements in 
which the pairing axes are orthogonal, with all the defects nearly equidistant from a 
common center.  This would be suitable for kaons (2-axis), and nucleons (3-axis), but 
would apply to the hyperons, only if one, two, and three pairs of defect-pairs, 
respectively, shared common axes. 
 
It will be useful, now, to examine how the charges of the c-voids in each pair comprising 
the above particles must be constituted, so as to arrive at the known charges of the 
various members of the first three groups.  Assigning c-void charges is simple for the 
isolated single defect-pairs, the pions: 
 
 

Table 2-2: C-Void Charges of Pions 
 

Particle C-Void Charges Spacing 
+π  +,+ Odd 
0π  +,- Even 
−π  -,- Odd 

 
 
Since c-voids have charges of ±1/2e, the two charges cancel in the 0π , while both the 

+π  and −π  have unity charge. 
 
Moving to the kaons, we note the following possibilities: 
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Table 2-3: C-Void Charges of Kaons 
 

Particle C-Void Charges Spacing 

+K  +,+ odd 

 +,- even 

0
1K  +,- even 

 +,- even 

0
2K  ( 0

SK  & 0
LK ) +,+ odd 

 -,- odd 

−K  -,- odd 

 +,- even 

 
But, in addition to these, we have two possibilities with ±2e charge: 

 
++K  +,+ odd 

 +,+ odd 
−−K  -,- odd 

 -,- odd 

 
 
These double-charged particles are not found.  IPP explains this absence as due to their 
inability to undergo charge-exchanges, which causes them to separate immediately into 
two like-charge pions.  Notice that both 0

LK  & 0
SK have the 0

2K  form; they differ in the 
slant relationships of their two defect-pairs (See Fig. 2-6, pg. 2-10). 
 
For the nucleons, which we may visualize, crudely, as a cube with c-voids in the centers 
of the six faces, we have the following possibilities: +++n , ++n , +n , 0n , −n , −−n , −−−n .  
Of these, only the middle three are found: 
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Table 2-4: C-Void Charges of Nucleons 
 

Particle  C-Void Charges Spacing 
+n  ( 1p ) +,+ odd 
  +,+ odd 
  -,- odd 
 ( 2p ) +,+ odd 
  +,- even 
  +,- even 
0n  ( 1n ) +,+ odd 
  -,- odd 
  +,- even 
 ( 2n ) +,- even 
  +,- even 
  +,- even 
−n  (@ 1p )* -,- odd 
  -,- odd 
  +,+ odd 
 (@ 2p ) -,- odd 
  +,- even 
  +,- even 

 
* Throughout this chapter, prefix "@" = antimatter form. 
 
 
Notice, that each of the above nucleon types has two distinct forms, differing by the 
numbers of odd and even defect-pairs each possesses.  Each nucleon exists sequentially 
in both forms, through a repetitive pattern of charge-exchanges, which I shall soon 
explain and diagram.  Double charge nucleons do not form, because only two of the 
three defect-pairs can be linked together by charge-exchanges; triple-charge don't form, 
because they can't have charge-exchanges. 
 
 
Determining Defect Spacings Of Clustered Defect-Pairs 
 
We start with the pions, since they are clearly the simplest.  The 0π  has an even defect-
pair spacing, and an experimental mass value of 134.96 MeV, while the +π  and −π  are 
odd spaced, and have a mass of 139.57 MeV, and since the odd spacing is heavier, we 
may expect its dimension to be one lattice unit larger.  If this is true, we should be able 
to obtain the defect spacings of the two pions by finding two integers, d+1, d (d being 
even), which have the same ratio as the square-roots of the two pion masses: 
 

(139.57)½/(134.96)½= 1.0169 
d = 60ü 61/60 = 1.0167 
d = 58ü 59/58 = 1.0172 
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These spacings seem so unreasonably large, that we need to consider another 
possibility.  Perhaps, there may be a ±2ü alternation of spacing, as a pion moves 
through the space lattice, in either the even or odd defect-pair.  A little reflection should 
convince us that it is in the odd pair, since the r.m.s. spacing of the odd must be 
greater than the even to account for its greater mass.  What we shall assume is that the 
odd-spaced defect-pair alternates between d - 1 and d + 1, where d is the spacing of the 
even-spaced pair.  We shall also assume that the effective mass of the odd pair is the 
simple average of the two mass states, and will be proportional to the mean square of 
the two defect spacings.  We seek to find a ratio between the mean square of the odd 
spacings and the square of the even spacing which is equal to the ratio of the masses of 
two particles: 
 

 139.57/134.96 = 1.034 
d = 4ü .5(3²+5²)/4² = 1.063 
d = 6ü .5(5²+7²)/6² = 1.028 
d = 8ü .5(7²+9²)/8² = 1.016 

 
Clearly we should choose d = 6ü, although the equality is not perfect.  This discrepancy 
is not unexpected, since even-spaced and odd-spaced defect-pairs experience attraction 
and repulsion, respectively, between their two c-voids, which may alter the cancellation 
geometry.  So, let us accept these spacings for the pions ( 0π = 6s, and ±π = 5s/7s), and 
see what these values imply for the spacings of kaons and nucleons.  A suitable 
approach is to find the average mass per defect-pair for the kaons and nucleons, and 
see how the square-roots of these masses compare. If the pion spacings are correct, we 
should see some simple ratios in these square-root values, since they should be 
equivalent to defect-pair spacings. 
 

Table 2-5: Integer Ratios of Particles 
 

Group Mass Mass/Pair M½ Ratio Integer 
pi's 137 137 11.70 1.00 6/6 
K's 496 248 15.75 1.35 8/6 
n's 939 313 17.69 1.51 9/6 

 
Again, we are faced with a result which is not perfect, but which is tantalizingly close to 
the integer ratios shown in the last column.  Thus, our assumed average spacing of 6ü 
for the pions suggests an average spacing of 8ü for the kaons, and 9ü for the nucleons.  
Let us accept these, tentatively, as we search for further corroboration. 
 
 
Choosing Specific Defect-Spacings 
 
Our next step is to choose resonance* defect-spacings for the pions, kaons and 
nucleons, consistent with these average values: 
 
* In addition to its conventional meaning, I use the word "resonance" to refer to a cyclical variation of defect-
pair defect-spacings, due either to a repetitive sequence of charge-exchanges, or to alternating spacing 
changes of ±2ü as a defect-pair moves through the lattice. 
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Table 2-6: Spacings of Pions, Kaons, and Nucleons 
 

Particle 1st Pair 2nd Pair 3rd Pair 
Structure Chgs Spcs Chgs Spcs Chgs Spcs 
+π   +,+ 5/7     
0π   +,- 6/6     
−π   -,- 5/7     
+K   +,+ 7/9 +,- 8/8   
0
LK   +,+ 7/9 -,- 7/9   

0
SK   +,+ 7/9 -,- 9/7   

−K   -,- 7/9 +,- 8/8   
+n  ( 1p ) +,+ 9/9 +,+ 9/9 -,- 9/9 

 ( 2p ) +,+ 9/9 +,- 8/10 +,- 10/8 
0n  ( 1n ) +,+ 9/9 -,- 9/9 +,- 8/10 

 ( 2n ) +,- 8/10 +,- 10/8 +,- 8/10 
−n  (@ 1p ) -,- 9/9 -,- 9/9 +,+ 9/9 

 (@ 2p ) -,- 9/9 +,- 8/10 +,- 10/8 

 
Notice, in Table 2-6, that in order for the spacings to sum to the average integer values 
in Table 2-5, we must assume that some particle structures have two equally probable 
sets of defect-pair spacings.  Let us assume that the defect-pair spacings to the left of 
the "/" constitute one charge-exchange state, and those to the right another.  Notice 
that the sum of the spacings for some particle structures differ between the two states; 
hence, the masses of the two states will also differ.  This difference is apparent for the 

±K , and the 0
LK , but not for the 0

SK .   It is also apparent for both forms of the neutron 
( 1n  & 2n ), but the proton and antiproton have the same sums for both states, for each 
of the two forms. 
 
 
Validating Our Chosen Spacings 
 
Let us now attempt to validate these assumed spacings, by seeing whether they can 
account for the observed mass differences between the neutral and charged forms of the 
kaons and nucleons.  We shall do this by comparing the ratios of the neutral and 
charged masses to the mean sum of the squares of the defect spacings in their two 
assumed resonance states, or, in brief, computing the constant, K, in Equation 1, for 
the neutral and charged forms.  For the kaons, we have the following: 
 

Table 2-7: Computing Constant, K, for Kaons 
 

Particle Mass(MeV) Mean Sum of Squares K 

±K    493.667 .5(7²+8²+9²+8²) = 129 3.8269 

0K    497.67 .5(7²+9²+7²+9²) = 130 3.8282 
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The values for K differ by only one part in 3000 between the charged and neutral kaons, 
and are encouragingly close to the values for the 0π  (3.7490), and for the ±π  (3.7721).  
Notice that for both classes of particles the constant, K, appears to be larger for odd-
spaced particles (like-charge) and smaller for even-spaced (unlike-charge).  This 
difference suggests that "electrostatic" ECE displacements may have a second-order 
effect on the cancellation process. 
 
Let us now make the same calculations for the nucleons.  This requires us to anticipate 
some of our findings about inter-defect-pair charge-exchanges in our subsequent 
structural analyses.  We need to know what percent of the time the proton is in the 1p  
form, compared with the 2p  form, since it should be evident that the mass of the first is 
less than the second (the same is true of the neutron).   
 
Our insight is that charge-exchanges can take place only in face-diagonal directions of 
the lattice.  Applied to the nucleons, with three orthogonal defect-pairs, this means that 
charge-exchange possibilities exist in all six face diagonal directions of the space lattice.   
 
Next, these exchanges can take place only between diagonally adjacent defects of 
opposite charge (hence, charge-exchange), and this will change odd-spaced defect-pairs 
to even, even to odd, if only one charge-exchange occurs at a time (which seems 
reasonable, although other possibilities can be imagined).  Thus, if we imagine a proton 
in a 1p  form, with all three defect-pairs odd-spaced, it is clear that a charge-exchange 
must produce two even-spaced defect-pairs, leading to the 2p  form. 
 
Now, if the non-participating defect-pair in the first exchange enters into the next 
exchange, we will have an odd and an even, changing into an even and an odd, leading 
to another 2p  state.  If the next exchange is between two even-spaced defect-pairs, we 
will again have three odd-spaced defect-pairs, or the 1p  form.  A continuation of this 
sequence will produce twice as many 2p  states as 1p  states. 
 
Neutron charge-exchanges lead to an opposite conclusion.  It should be clear that the 
2n  form, with three even-spaced defect-pairs, must always change to the 1n  form (three 

even go into one even and two odd).  On the other hand, the 1n  form can either change 
to another 1n  form (odd/even changing to even/odd), or to a 2n  form (odd/odd to 
even/even).  Thus, there will be twice as many 1n  states as 2n  states.  However, as we 
have noted, there are two distinct mass states for both the 1n  and 2n  forms, so it will 
require a six-state charge-exchange cycle to exhaust the possibilities.  Over the six-state 
exchange, the states will be as follows: low-mass 1n , 2/6ths of the time; high mass 1n , 
2/6ths; high mass 2n , 1/6th; low mass 2n , 1/6th of the time. 
 
Using these data, we may calculate the constant, K, for the proton and neutron as 
follows: 
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Table 2-8: Computing Constant, K, for Nucleons 
 

State 
Sum of d² 

(each state) 

Time 
Fraction 

Mean Sum of 
Squares 

K 
(M*/ d²) 

1p  222 999 ++  = 243 x 1/3 

2p  222 1089 ++  = 245 x 2/3 
244.333 3.840162 

     
lon1  

222 899 ++  
= 226 x 2/6 

hin1  
222 1099 ++  

= 262 x 2/6 
   
lon2  

222 8108 ++  
= 228 x 1/6 

hin2  
222 10810 ++  

= 264 x 1/6 

244.667 3.840212 

 
* I use the 1973 values for the proton and neutron masses in the above calculations, and throughout this 
chapter.  These were altered slightly in 1987, but not significantly enough to warrant redoing all my previous 
calculations. (proton: 1987 = 938.27231 ± 0.00028 MeV/c², 1973 = 938.2796 ± 0.0027 MeV/c², neutron: 
1987 = 939.56563 ± 0.00028, 1973 = 939.5731 ± 0.0027). 
 
The constant, K, for the proton and neutron are very close to the same value (within 1 
part in 75,000). 
 
Now, to help you visualize these complicated scenarios, let us look at four schematic 
diagrams, which show the imagined pathways of the charge-exchanges leading to these 
various states for kaons and nucleons, along with the mass calculations for each state 
(using the equation, somewhat prematurely, that we are seeking): 
 
 

Fig. 2-6 Charge-Exchange States In Neutral Kaons 
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Fig. 2-7 Charge-Exchange States Of Plus Kaon 
 

 

 
 
 

Fig. 2-8 Charge-Exchange States In T-Slant Proton 
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Fig. 2-9 Charge-Exchange States In T-Slant Neutron 
 

 
 

Note: the slant orientations of the y-axis defect-pairs are opposite to those of the Fig. 2-8 proton, and the 
charges of top & bottom defects are opposite in all states, except state 4.  These desiderata are essential to 
the formation of the deuteride diagonal bond. 
 
 
Forming A Mental Picture Of Charge-Exchanges 
 
The phenomenon of charge-exchanges in hadron particles is most easily perceived by 
exploring, first, the interaction of the opposite-polarity voids comprising a void-pair 
(IPP's electron neutrino).  These two uncollapsed voids will obviously be attracted directly 
towards each other, but they will not be able to collide, because each occupies mutually 
exclusive lattice locations (See Fig. 1-9, p. 1-19, to verify this).  Thus, instead of 
annihilating, they simply oscillate back and forth past each other forever, as they drift 
though the lattice. 
 
Now, to understand charge-exchanges in clustered defect-pairs, we need one more bit of 
information about how c-voids move through the space lattice.  Since they are collapsed 
voids, they can move only by uncollapsing midway between the two adjacent c-void 
locations occupied during hovering.  Thus, c-voids become voids twice during each 
hovering rotation, and all the c-voids in a cluster will be experiencing synchronous c-
void → void cycles, because their proximity forces their hovering oscillators into 
synchronism.      
 
What IPP perceives is that orthogonal defect-pairs very often have similar defect 
spacings.  This causes their c-voids to be in face-diagonal directions from each other, 
making them susceptible to charge-exchanges when their c-voids are of opposite 
polarity and in this intermediate "void" state.  But, rather than oscillating back and 
forth continually, they merely move past each other once, and then are arrested by 
rearrangement into a c-void.  These charge-exchanges frequently involve many, or all, of 
the c-voids of a defect-pair cluster, typically in a serial sequence which produces a 
repetitive pattern of states with altered defect-pair spacings, summing to different 



 

2 - 20       © 2001 Infinite Particle Physics, LLC 

masses.  Therefore, calculating the mass of a hadron usually requires finding the 
average mass of several charge-exchange states. 
 
Charge-exchanges are exceedingly important to IPP, since they are vital in explaining 
particle structures, particle lifetimes, magnetic moments, nuclear strong-force bonds & 
nuclear structures, and the complex processes at work in particle creations, 
interactions, and decays.  Now, with this improved understanding of charge-exchanges, 
let us return to: 
 
 
Calculating The Mass Vs. Defect Spacings Of Defect-Pairs 
 
Having validated our assumed spacings for the pions, kaons, and nucleons, we should 
see that we have enough information to calculate the mass in MeV for defect-pair 
spacings between 5s and 10s. We shall begin with the nucleons, using the resonance 
spacings, and time fractions of Table 2-8.  We can set up two equations, each with two 
unknowns, since both the proton and neutron charge-exchange cycles exhibit equal 
numbers of 8s and 10s defect-pairs.  Over a complete cycle of six states, each defect-
pair spacing (shown in brackets, below) will have occurred the following number of 
times: 
 

proton:   10(9ü), 4(8ü), 4(10ü) 
neutron:   8(9ü), 5(8ü), 5(10ü) 

 
If we assume that the particle spends equal time in each state, we may simply equate 
the mass of the sum of all the defect-pair spacings, over the cycle of six states, with six 
times the mass of the proton (or neutron): 
 
Setting 9ü = x, and (8ü + 10ü) = y, we have: 
 

10x + 4y = 6(938.2796) 
 8x + 5y = 6(939.5731) 

 
Solving this: 9ü = 311.0352; (8ü + 10ü) = 629.9314 MeV 
 
In a similar manner, we have for the kaons (in a two state charge-exchange cycle): 
 

 
+K   2(8ü), 1(7ü), 1(9ü) 

 
0K :  2(7ü), 2(9ü) 

 
Setting 8ü = u, and (7ü + 9ü) = v, we have: 
 

2u + v  = 2(493.667) 
2v   = 2(497.67) 

 
Solving this:  
 

8ü = 244.832; (7ü + 9ü) = 497.67 MeV 
 
 
We can summarize what we have determined thus far: 
 

Table 2-9 Mass Data Thus Far 
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C-Void Spacings Mass (MeV) 
5ü + 7ü = 2(139.5673) 
6ü = 134.9630 
7ü + 9ü = 497.67 
8ü = 244.832 
8ü + 10ü = 629.8314 
9ü = 311.0352 

 
 
From which data, we get: 
 
 

Table 2-10: Defect-Pair Mass vs. C-Void Spacings 
 

C-Void Spacings Mass (MeV) Constant K 
5ü 92.500 3.7000 
6ü 134.9630 3.7490 
7ü 186.635 3.8089 
8ü 244.832 3.8255 
9ü 311.0352 3.8399 
10ü 384.9994 3.8500 

 
 
The values for the constant K, above, were computed by substituting the c-void 
spacings and mass values for each c-void defect spacing into Equation 1 ( 2d/km = ).  
These values for K have been plotted in Fig. 2-10, below, in two ways, normally in the 
left hand plot, and with a suppressed zero in the right hand plot.  The plots show that 
the values we have found for the constant K vs. defect-spacings fall neatly on two 
smooth curves, those with even-spaced defect-pairs, and those with odd-spaced.  This 
consistency suggests that the curves can reliably be extrapolated to larger defect-
spacings. 
 

Fig. 2-10 Plot Of Table 2-10 Values 
 

 
 
  
Deriving An Equation Of Mass Vs. C-Void Defect Spacing 
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These variations of K with defect-spacings are somewhat in line with our expectations, 
being smaller at closer defect spacings (showing higher cancellation efficiency?), and 
differing progressively more between even and odd spacings, as the spacings diminish 
(showing more "electrostatic" influence?).  Yet there are a number of problems with the 
data, which we need to consider: 
 

1) In the derivations, there is a tacit assumption that K is constant for the three c-
void spacings used in each pair of equations (although this assumed value 
differs between the kaon and nucleon calculations).  Since this assumption 
proves not to be true, the mass values we have obtained for the various defect 
spacings clearly are not quite correct. 

 
2) The 9ü & 10ü values seem too high and too low, respectively, since they cause 

the odd-spaced & even-spaced curves to cross, rather than to become asymptotic 
at large defect-spacings, as we would expect from our electrostatic influence 
speculation. 

 
These uncertainties prompted me to use an iterative curve-fitting routine to make an 
equation which calculated the exact values for these six particles: p, n, 0K , +K , +π , 0π .  
This equation is given in Fig. 2-11.  This equation was unsatisfactory, because the even 
& odd spaced curves diverged with increasing spacings, instead of converging (as reason 
would insist):  
 

Fig. 2-11 Plot Of Equation 4-2 
 

 
 

 
Assuming that the above equation may have failed because of the lesser accuracy at 
that time (circa 1978) of the 0K  mass, I fitted my next attempt to the masses of only five 
particles: p, n, +K , +π , 0π .  This attempt yielded the more satisfactory Equation 4-3, 
below:  
 

Fig. 2-12 Plot Of Equation 4-3 
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The second terms of the two equations correct for the electrostatic interactions between 
the two c-voids, and for changes in cancellation efficiency with changes in spacings, but 
they lack physical referents, because they lump both corrections into an unintelligible 
mixture.  So, our equation is ugly, but it proves to be serviceable: 

 
 
The Mass, m, Of Defect-Pairs Vs. Defect Spacing, d 
 
 

  
55316.1

2

d

010.70
d8692712.3m:deven −=  

Equation 4-3 
 

  957023.0
2

d

455.19
d8692712.3m:dodd −=  

 
  
Testing Equation 4-3 
 
To test this equation, we need to find larger defect-pair clusters without inter-pair 
bonds.  A good way to start is to draw all the readily visualizable clusters of meson 
resonances.  I have done this in Fig. 2-13, below.    
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Fig. 2-13 Meson Resonance Structures 
 

 
 
 
In Fig. 2-13, the dashed lined connecting tabs define paired defects, while the dotted 
lines show the location of inter-pair bonds.  If we examine these structures carefully, we 
see that there are only four that have no inter-pair bonds.  These are labeled 0π , ( ±D , 
0D , 2a (1320), tau), ( 0K  & ±K ), K′ .  Let's direct our attention to the second structure, 

which, having eight defect-pairs stabilized by inter-defect charge-exchanges, should 
require larger defect-spacings to test the equation's extrapolated values.  Let's look first 
at the D0 meson, because it has the simplest structure:  
 
 

Fig. 2-14 Charge-Exchanges & Mass Calculations: D0(1863) 
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This drawing was made nearly twenty years ago.  The current experimental mass value 
(LBL 1994) is 1864.6±0.5 MeV, so the calculated value is still well within experimental 
tolerances.  Almost as good agreement with experiment is exhibited by the −D  meson 
structure in Fig. 2-15 (drawing also circa 1980), for which the current experimental 
mass value (LBL 1994) is 1869.4±0.4 MeV.  Notice that the lone even-spaced defect-pair 
alternates between 10ü to 12ü in the two charge-exchange states, and switches cardinal 
orientation with each charge-exchange. 
 
 

Fig. 2-15 Charge-Exchanges & Mass Calculations: ±D (1863) 
 

 
 

 
Fig. 2-16 Charge-Exchanges & Mass Calc: ±τ meson 

 



 

2 - 26       © 2001 Infinite Particle Physics, LLC 

 
 

 
IPP's tau meson (alter-ego of QCD's tau lepton) bears a resemblance to the ±D , but, 
here, the particle has a charged "core" with neutral "outriggers", rather than a neutral 
core & charged outrigger.  We may speculate that it is this charged "core" which 
simulates the characteristics of a lepton, since the serial sequence of four central 
charge-exchanges (only two of which are shown, above) creates a spin analogous to the 
electron and muon. 
 
The mass value reported by LBL lowered dramatically between 1992 (1784.1+2.7,-3.6 
MeV) & 1994 (1777.1+0.4,-0.5 MeV).  The reason for this change is discussed on pages 
1403 & 1404, of Physical Review D, Vol. 50, from which I infer that the lower mass 
value resulted from giving more mass emphasis to tau decays with larger branching 
ratios.  This suggested to me that there may be two structures of the tau, (1) the above 
pseudo-lepton form, manifesting 1-prong, zero-neutral-meson decays, and (2) a lower-
mass structure containing a strong-force bond between two kaon-type sub-structures, 
manifesting branching decays (the KK meson form, below): 
 
 

Fig. 2-17 Two Possible Structures of the −τ  Meson 
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You will notice that I have applied the weighting factors, 51/116 & 65/116 to the 
calculated masses of the two structures to obtain an average mass for the tau which 
matches experiment.  I obtained these factors from Table 2, on page 1404 of Physical 
Review D, Vol. 50 which showed that, of 116 data entries, 51 were 1-prong, 0 neutral 
meson decays (presumed by IPP to come only from the pseudo-lepton structure), while 
65 were more branched (presumed by IPP to come only from the KK structure).  Perhaps 
further experiments may find a way to differentiate these two structures. 
 
Let us now see how IPP calculates these strong-force bonds: 
 
 
Bonding of Defect-Pairs Derives From Residual Distortion 
 
Every defect-pair has a residue of expansion/contraction distortion due to the 
substantial separation of the two, paired c-voids.  This residual distortion will be 
proportional to the defect-pair's mass, and a portion of this distortion will be canceled if 
residual zones of expansion distortion of one defect-pair overlap residual zones of 
contraction distortion of the other, and vice-versa.  This overlap cancels a portion of the 
mass of the two defect-pairs, binding them together.  Cancellation bonds are of two 
types: paraxial bonds, where defect-pairs have a common pairing axis; diagonal bonds, 
where bonded c-voids have a common cardinal plane.  I illustrate these in Fig. 2-18, 
where dashed lines signify paired c-voids, and dotted lines show the locations of the 
strong-force bonds: 
 
 

Fig. 2-18 The Two Kinds of Strong-Force Bonds 
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The Geometry of Paraxial Bonds 
 
These bonds are created when two defect-pairs are aligned end-to-end along a common 
pairing axis, with a gap between the two defect-pairs which we will call the "bond 
spacing".  While the bond spacing is the most significant variable, we should perceive 
that all four defects along the common pairing axis will interact with each other.  Two of 
these interactions will have "crossed" axes of contraction, and, thus, will tend to reduce 
the mass of the cluster; two will have parallel axes of contraction, and, thus, will tend to 
increase the mass of the cluster.  To find the mass-deficit of the paraxial bond, then, we 
must take the algebraic sum of these four components, each of which should be directly 
proportional to the product of the masses of the two defect-pairs, and inversely 
proportional to the square of the various defect-spacings. 
 
 
The Paraxial Bond Mass-Deficit Equation 
 
Now, look at the lower right paraxial-bond structure of Fig. 2-18 to see the meaning of 
d1, d2, & d3, used in our equation, below.  We see that there are two shrinkage 
canceling (mass-deficit enhancing) alignments, with spacings of d2, and d1+d2+d3, and 
two shrinkage augmenting (mass-deficit canceling) alignments, with spacings of d1+d2, 
and d2+d3.  The paraxial bond mass-deficit is the algebraic sum of the mass 
contributions of all of these interactions: 
 
 

Equation 5-2  
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where: a = d2, b = d1+d2, c = d2+d3, d = d1+d2+d3 

 
 
The constant of proportionality in the above equation is expressed as 1/Q for 
convenience.  Q has the value 294.02, and was chosen to make the mass of the 
sigma+(1189) calculate to the LBL 1982 center value (1189.36±0.06 MeV): 
  
 

Fig. 2-19 Mass Calculation of Sigma+(1189) 
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In the schematic above, the sign in parenthesis, (-), represents a 7ü defect-pair of minus 
charge, normal to the plane of the paper.  The number in brackets, [8], is the 8ü bond 
spacing between paraxially-bonded 9ü & 10ü defect-pairs, while the figure, -4.25, is the 
bond mass-deficit of this paraxial bond.  Here is how to interpret the various prefixes: 
xpb = paraxially-bonded pair aligned in the x-direction; ynb & znb = unbonded ("no-
bond") defect-pairs in the y & z-directions, respectively; mass of pairs = simple sum of 
the masses of all the defect-pairs comprising the particle; mass of state = mass of all 
the defect-pairs of that state minus the sum of all its bond mass-deficits; the mass of 
particle = simple average of the masses of all the particle's charge-exchange states 
(here, only one state is shown, because the two charge-exchange states have identical 
defect-pair & bond spacings). 
 
I had initially chosen a value for Q to fit the LBL 1978 mass value for the +Σ , 
1189.37±0.06 MeV, but altered it in 1982 to bring it "up to date". Incidentally, LBL 
returned to this value, 1189.37±0.06, in 1986, but I retained my 1982 constant for Q, 
because I found it produced good agreement with experimental values across a wide 
spectrum of meson and baryon resonances, as we shall see. 
My first test of constant, Q, was the −Σ (1197) particle: 
 
 

Fig. 2-20 Mass Calculation of −Σ (1197) 

 
 
 
This was precisely the LBL center value in 1982, but by 1988 it had been changed to 
1197.43±0.06 MeV. 
 
 
Experimental Habits Prevent Determining Accurate Bond Constants 
 
These alterations of mass values over the years pose a niggling problem for my theory, 
which, in contrast to QCD, has the capability of accurate mass calculations.  
Apparently, since QCD lacks the ability to calculate masses accurately, particle 
physicists have felt no urgency to refine all the mass values in the LBL list, as improved 
experimental techniques make more accurate measurements possible.  Instead, they 
concentrate upon whatever particles excite the curiosity of the moment, leaving the 
well-established particles with unimproved mass values, many last measured in the late 
sixties. 
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You will perceive that these experimental habits cause any method of determining bond 
constants to fail to yield precise correlations between calculated and experimental 
values.  If based upon older measurements, they will fail to correlate with newer values, 
and vice versa.  This situation will undoubtedly change when IPP is accepted.  Until 
then, I shall use the constants determined in 1982, since they provide good correlations 
with most of the older particles.    
 
 
Gaining Insight into the Mechanics of Charge-Exchanges 
 
Let's see if we can understand why all the charge-exchange states of the +Σ , −Σ , and 
other charged hyperons have the same mass.  We obviously can't assume that the 
defect-pairs remain in a fixed geometrical relationship, because these particles have 
mean lifetimes long enough (in the vicinity of 1010−  seconds) to endure countless 
translations through the space lattice.  What must occur is that the charge-exchanges 
will reverse the c-void charges in certain cardinal directions, and will shift the cardinal 
directions of certain defect-pair spacings, but in a manner which preserves the total mix 
of defect-pair & bond spacings.  Let's look at two charge-exchange schemes for the 
sigma+, to see how this comes about: 
 
 

Fig. 2-21 Two-State Dual Charge-Exchanges in +Σ  

 
 
 

Fig. 2-22 Two-State Triple Charge-Exchanges in +Σ  
 

 
 
 



 

IPP – The Quantitative Aspects of Defect-Pairs 2- 31 

We see above, that both dual & triple synchronous charge-exchanges among the T-slant 
"core" defects yield the correct mass.  However, these schemes don't work for the −Σ  
hyperon, because charge-exchanges with the paraxially-bonded defects would alter the 
combination from 10[9]10 to 9[9]11, which would result in a particle mass increase of 
7.43 MeV.  So the only plausible charge-exchange is a four-state series of single charge-
exchanges, as shown below: 
 
 

Fig. 2-23 Four-State Charge-Exchange Cycle of −Σ  
 

 
 
 
Notice that both the +Σ  & −Σ  have a neutral "core" with charged outriggers defects, 
whose polarity matches the particle charge.  You will perceive that equally stable 
particles could result from reversing all the defect charges of each particle, thereby pro-
ducing the antiparticles of each. 
 
Now, let's look at the neutral sigmas.  It seems clear that these can form in two ways: 
[A, B] with charged cores and opposite-charge outrigger defects; [C, D] with neutral cores 
and neutral outrigger defects.  Each of these can form in two ways: [A, C] with a neutral 
central kaon sub-group; [B, D] with a charged central kaon sub-group: 
 

Fig. 2-24 0Σ (1192) Structures with Charged Cores: 
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Fig. 2-25 0Σ (1192) Structures with Neutral Cores: 
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These pairs of structures are perhaps not mutually exclusive, since [A] & [C] could 
change into [B] & [D], respectively, by charge-exchanges between the kaon sub-group 
and an inner defect of the paraxially-bonded duo.  We might presume that this does 
happen, because the sum of the four disparate masses yields a value quite close to the 
experimental value of LBL(1982).  However, these structures clearly could not decay 
0Λ (1115) + gamma (100%), and certainly would not have the short mean life of 

7.4±0.7e-20 sec, as reported in LBL(1994).  This discrepancy suggests that the pairs, [A] 
& [B], and [C] & [D], do not change into each other, and that the disparate masses of 
these structures have prevented particle physicists from identifying them as neutral 
sigmas, since they would be looking, instead, for a mass close to those of the charged 
sigmas. 
 
The dominant decay mode of the 0Σ (1192), 100% into 0Λ  (1115) plus gamma, is the clue 
needed to resolve this confusion.  This decay suggests that the structure of the 0Σ  is 
just an enlarged lambda, with larger defect spacings, but lesser symmetry, such as 
illustrated in Fig. 2-26, below.  Note that the mass is within 0.01 MeV of the LBL(1994) 
value (1192.55±0.08 MeV), and can decay into 0Λ , by the charge-exchanges & defect 
shifts shown: 
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Fig. 2-26 Decay of SIGMA0(1192) to LAMBDA0(1115): 
 

 
 

 
It will be useful, now, to take a slight diversion to discover: 
 
 
How Hyperons Form ─ Understanding Associated Production  
 
The sigma hyperons are assigned a "strangeness" of plus one by QCD.  This designation 
evolved from an attempt to explain an experimental finding that, in the production of 
these sigmas, one always finds a kaon emerging from the production center in a 
direction opposite to the emerging sigma.  Having assigned a strangeness of minus one 
to kaons, and believing firmly in the conservation of nearly everything, QCD assumed 
that the strangeness of sigmas must be equal & opposite to that of the kaon, and since 
the kaon was imagined to be comprised of a strange anti-quark plus a regular quark, 
the sigma was imagined to be comprised of one s-quark plus two u/d quarks.  QCD 
assumes that sigmas are more massive than nucleons, simply because s-quarks are 
heavier than u or d quarks, while IPP explains the heaviness as due to an extra defect-
pair. 
 
IPP's explanation of associated production is more meaningful, and much easier to 
visualize, and, furthermore, yields a geometric concept of "strangeness".  However, we 
will need to develop an understanding of the structures of delta and neutron (N-
baryons) resonances as a preliminary, because sigmas and lambdas evolve from delta 
and N-baryon precursors.  Here's how to visualize the structural differences among 
these four categories: 
 

Fig. 2-27 Structural Forms of Deltas & Sigmas 
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Fig. 2-28 Structural Forms of N Baryons & Lambdas 
 

 
 
 
These schematics will help us to identify the specific structural elements characteristic 
of each type resonance, and let us follow, to some degree, the manner in which they are 
created.  Notice that in all the above resonances the extra pion attaches to the nucleon 
core by a paraxial bond, or by a diagonal bond.  They differ in that deltas and N's leave 
the nucleon core intact, whereas sigmas & lambdas require one core defect-pair to be 
displaced.  This displacement is crucial to prolonging the lifetimes of sigmas & lambdas, 
since it incorporates the extra pion into the nucleon matrix, and thereby makes it 
difficult to extract.  On the other hand, the dangling attachment of the pion in delta's 
and N's makes it vulnerable to any passing influence, so these resonances have very 
short lifetimes. 
 
 
Typical Sigma & Lambda Production Scenarios 
 
What is required to form a sigma or lambda is some process which causes one of the 
nucleon defect-pairs to bond to a fourth defect-pair, and subsequently to shift its 
location relative to the other two nucleon defect-pairs.  To accomplish this, a nucleon 
must suffer a collision which produces enough undedicated shrinkage to embellish the 
nucleon core with multiple pion attachments of the delta or N type in an asymmetrical 
arrangement, as shown in Fig. 2-23. 
 
 

Fig. 2-29 Understanding Associated Production 
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The subsequent fission of these six-defect-pair clusters, as shown in the lower figures, 
endows each separating cluster with equal components of momentum, which divides 
equally among its defect-pairs contiguous to the break point.  The result is to create 
differential accelerations inversely proportional to the individual defect-pair's mass, 
which causes the bonded duo to lag behind the other two nucleon defect-pairs, initially, 
thereby allowing the sigma or lambda structure to form, along with an oppositely 
directed kaon. 
 
 
IPP's Concept of "Strangeness" 
 
For this scenario to work, it is necessary for at least two defect-pairs to break off from 
the lagging side of the precursor sigma, or lambda, in order to generate sufficient 
differential separation momentum.  These two defect-pairs are also required to be 
adjacent delta and N-type attachments, in order to produce a momentum impulse 
adequately aligned with the paraxial (or diagonally) bonded duo.  If you look carefully at 
the "slants" of delta and N-type attachments, you will see that these are opposite slant 
forms.  Thus, their merger will produce an S-slant kaon form, and the fact that this 
differs from the A-slant sub-groups of a nucleon makes this kaon structure "strange".  
This is IPP's concept of strangeness.  Furthermore, you will observe that the differential 
motion between the paraxially bonded defect-pairs relative to the other two defect-pairs 
would tend to create an M-slant nucleon "core" in the resulting sigma+ hyperon, 
whereas the precursor particle had a T-slant "core".  This change from T-slant to M-
slant could also be viewed as strangeness ─ but there are reasons to doubt that sigmas 
actually have this M-slant core.  Let's look at an M-slant Sigma- to see why: 
 
 

Fig. 2-30 Charge-Exchanges of SIGMA- with M-Slant Core 
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Notice that the location of the K- subgroup is inherently off-center in the M-slant core, 
while it is centered in the T-slant core of Fig. 2-23; it seems likely that this off-center 
position would tend to destabilize the charge-exchange cycle, producing a mean life 
more like the M-slant three-axis K′ (892)(full width MeV50≈Γ , roughly sec10 22− ).  
Thus the relatively long mean life of the sigma- (≈ 1.5e-10 sec) points rather strongly 
toward the T-slant form.  Producing this form by the scenario of Fig. 2-29, however, 
requires flipping the slant directions of the paraxial duo as the hyperon forms.  The only 
disturbance I can imagine capable of causing this flip is passing through a grain 
boundary of the space lattice during the hyperon creation process.  Let me explain how 
this flip can happen: 
 
 
Why Grain Boundary Passage Can Reverse Slant Directions 
 
If space is presumed to be polycrystalline, it follows that the cardinal directions of the 
ether lattice will differ in adjacent grains.  Therefore, when a defect-pair passes through 
a grain-boundary, its paired c-voids will be required to rotate around their common 
center of mass, so as to align themselves in one of the (new) cardinal directions.  The 
slant of these new alignments will be influenced by the stored expansion/contraction 
directions that the defect-pair possessed in the previous grain.  In the worst case, where 
45 degree rotation is required, the new slant would be forming in the neutral zone 
between the previous expansion & contraction axes; thus, this new slant could take 
either direction with equal ease. 
 
 
Some Aspects of Diagonal Bonds 
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Diagonal bonds occur between defects which share a common plane of collapse.  These 
bonds are called "diagonal", because defects sharing a common plane of collapse will 
exhibit maximum cancellation of residual contraction-expansion distortion when their 
centers lie along a face-diagonal direction in the space lattice.  For cancellation of 
shrinkage, or bonding, to occur, the two defects will need to have opposite orientation of 
their axes of contraction.  This geometry illustrates the fact that diagonally bonded 
defects will exhibit maximum cancellation of shrinkage at any given separation when 
the bonded defects have opposite polarity.  It also illustrates that the pairing axes of the 
diagonally bonded defect-pairs will be parallel; thus, in general, diagonal bonds will 
come in two's.  We take this into consideration in the calculations, where we lump both 
bonds into a single value.  One can imagine structures in which the associating defect-
pairs are staggered relative to one another, with only a single diagonal bonds, but this 
situation is unusual, and will be treated as an exception.  The simplest particle 
exhibiting a diagonal bond is the eta meson, which I have shown in schematic form in 
Fig. 2-18. 
 
Since diagonal bonds act along a lattice face-diagonal, their spacings are specified in 
lattice face-diagonal units, which I shall write as ü/. However, in the printout of the 
calculations of diagonal bonds (e.g. xdb 8[5]8 =  this spacing is usually written "5", to 
save space, the √2 factor being included in the computer program. 
 
 
Calculating the Mass-Deficit of Diagonal Bonds 
 
Diagonally-bonded defect-pairs, being parallel to each other, can be considered to have 
a neutral zone at their mid-plane.  Thus, we can treat their interaction as if they were 
isolated from top to bottom, that is, we simply multiply by 2 the value calculated for one 
pair of diagonally-bonded c-void defects. 
 
This simplicity, though, is offset by the asymmetry of their overlapping distortion 
patterns, resulting from the edgewise cancellation of their expansion/contraction zones.  
It would seem that the cancellation process cannot be a linear function of the square of 
the defect spacing, but will become progressively more irregular as the bond-spacing 
decreases.  Also, since the most common occurrence of diagonal bonds is in clusters of 
four defect-pairs with parallel pairing axes (ring bonds), we must consider, as well, the 
interaction between the expansion/contraction fields of these orthogonal defect-pairs. 
 
 
Resolving an Ambiguity Between Single and Ring Diagonal Bonds 
 
Here, we are faced with an ambiguity: we may either imagine that each diagonal bond 
somewhat reduces the contraction-expansion distortion seen by the other (which would 
slightly reduce each bond compared to a single isolated db pair), or we can assume that, 
because they are orthogonal to each other, each bond acts rather independent of the 
other.  What I have elected to do is to develop the diagonal bond constant, 1/R, so that 
it fits the ring bonds, thereby placing the uncertainty of this ambiguity into the 
calculation of the single diagonal bond.  Then, I have developed an empirical com-
pensation for spacing changes (Equation 5-5).  The diagonal bond equations resulting 
from this approach are: 
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Equation 5-4  
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Note: f = diagonal bond spacing in lattice face diagonal units, ü/ 

 
The constant, R (511.92), should be approximately twice Q (294.09), since f² = 2d²; 
however, differences should be expected, because the zones of contraction and 
expansion are canceling edgewise, rather than normal, to the "principal" plane.  The 
value for R was chosen to produce exactly the LBL 1982 center value for the psi(3685).  
Although its mass is known only to an accuracy of ± 0.1 MeV (which makes a ± 0.5% 
uncertainty in the diagonal bond contribution), the psi(3685) makes a satisfactory 
reference in all other ways:  its charge-exchange states have the same structures (i.e. a 
single mass value), its diagonal bonds are in the geometry of a ring, and the mass 
contributions of its four ring-diagonal bonds is rather high (-20.96 MeV).  Also, the fact 
that it is a primary product of electron-positron annihilation, and has a very sharp 
resonance (full width Γ = 277±31 keV), indicating a highly symmetrical structure, allows 
us to be confident that the correct structure has been chosen:  
 
 
 Fig. 2-31 Ring-Diagonal-Bond Reference Particle, Psi(3685) 
 

 
 
 
The value for F in Equation 5-5 was chosen to compute the correct center mass value 
for the eta'(958), which, in my imagination, is a particle having four defect-pairs bound 
together by four diagonal bonds (two ring-bonds).  Notice that the equation is 
normalized for the spacing, 9ü/, of the psi(3685), so that F could be adjusted without 
affecting the calculated value of the ring bonds in the psi(3685).  A structure for the 
eta'(958) is shown in Fig 2-32, below: 
 
 

Fig. 2-32 Reference Particle for Factor, F, eta'(958) 
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In simple particles exhibiting the diagonal bonds, we shall find that the defects always 
assume the most favorable geometry for maximum cancellation of shrinkage, that is, 
they will always be in the same principal plane, and will be opposite in polarity.  
However, in more complex clusters, and especially in nuclei, where both paraxial and 
diagonal bonds occur, displacement from optimum alignment may occur, and the 
diagonally bonded defects may be of the same polarity, and be either in adjacent 
principal planes, or slightly out of diagonal alignment in the same principal plane.  This 
misalignment is usually limited to a few states of the complete charge-exchange cycle, 
and applies only to diagonal bonds.  Paraxial-bonded defects can retain perfect 
alignment regardless of their polarity, whereas diagonally-bonded defects of same 
polarity must be misaligned). 
 
Thus, we should understand that the amount of cancellation does not fall off drastically 
with a single lattice unit of misalignment, which is usually the extent of this deviation.  
The slight effect of diagonal bond misalignment is easily understood, if we remember 
that the cancellation of expansion-contraction distortion is a diffuse phenomenon 
extending to infinity; while the misalignment has a profound effect on local cancellation, 
it has little consequence for distant regions, where most of the cancellation occurs.        
 
 
Choosing the Constant, R, for Single Diagonal Bonds 
 
It is to be expected that the constant of proportionality, R, for single diagonal bonds will 
differ slightly from that of ring diagonal bonds, since ring-db's have the added 
complexity of two orthogonal defect-pairs. In 1982, I had my choice of three particles 
from which to get a single-bond value for R: eta(549) = 8/9[5/]8/9 = 548.8±0.6 MeV, 
lambda(1115) = 9[7/]9,9,7 = 1115.60±0.05 MeV, or from the deuteride bonding mass-
deficit = -2.2247±0.0053 MeV.  The deuteride, with more precisely-determined mass, 
was the obvious choice, but I was stymied, because there were countless ways to fit 
together the six charge-exchange states of each particle, each way giving a different 
mass-deficit calculation. 
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Lacking this insight, I used a fudge factor, Rx1.004, for the single diagonal bonds.  This 
produced the correct mass calculation for the eta(549), and yielded a satisfactory value 
for the mass of the lambda(1115), as I have shown in Fig. 2-26.  This factor also yields a 
value for the deuteride mass-deficit within 1% of the experimental value, as I discovered 
in 1997, when I was finally able to understand the way the proton and neutron charge-
exchange states relate to each other in the deuteride.  It became clear that the deuteride 
diagonal-bond spacings alternate between 9ü/ and 10ü/ over a twelve-state charge-
exchange cycle, and that the bonding defect-pairs of proton and neutron maintain 
equivalent defect spacings throughout the two successive six-state charge-exchange 
cycles (like the y-axis defect-pairs of Figs. 2-8 & 2-9).  Here is the complete mass-deficit 
calculation of this twelve-state charge-exchange cycle: 
 

Table 2-11: Calculation of Deuteride Mass-Deficit 
 

State #1 db  9[9/] 9 = -2.33 db  9[10/] 9 = -1.86 
State #2 db 10[9/]10 = -3.57 db 10[10/]10 = -2.85  
State #3 db 10[9/]10 = -3.57 db 10[10/]10 = -2.85  
State #4 db  9[9/] 9 = -2.33 db  9[10/] 9 = -1.86 
State #5 db  8[9/] 8 = -1.45 db  8[10/] 8 = -1.15 
State #6 db  8[9/] 8 = -1.45 db  8[10/] 8 = -1.15 
   
Ave. 6 states             = -2.45              = -1.96 
Ave. 12 states             = -2.20  
   
LBL value             = -2.22455 ± 0.00057 

 
 
We should not be surprised to find this 1% error, because the deuteride diagonal bond 
is complicated by the orthogonal presence of four other defect-pairs.  To avoid this 1% 
systematic error in the calculations of nuclide mass-deficits in my book, I have adjusted 
the constant, R, to produce the exact experimental value for the deuteride, and used 
this value for all the nuclide mass-deficit calculations. 
 
 
The Necessary Multiplying Factors 
 
The constant, R, for the various diagonal bonds calculates the bond mass-deficit for a 
hypothetical single pair of c-void defects.  Therefore, to obtain the bond mass-deficit of 
the four c-voids of two diagonally-bonded defect-pairs, we use the constant, 2R, and, for 
ring bonds, the constant, 4R. 
 
Now, I want to take a slight detour to fulfill a promise I made to you in my first chapter: 
 
 
The Size Of ECEs, Or More Properly, 
The Iterative Spacing Of Eces In The Simple Cubic Lattice? 
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We have called the center-to-center spacing between adjacent ECEs in the three 
cardinal directions of the simple cubic lattice of "empty" space a lattice-unit, 
abbreviated  "l.u.", or simply, "ü".  We can obtain a numerical value for a lattice-unit, 
because IPP lets us infer (from Fig. 2-8) that the six half-charges of a proton (four posi-
tive, two negative) are sited as if centered in the six faces of a cube having dimensions ≈ 
9 l.u. on a side.  These half-charges circulate so rapidly (through inter-defect charge-
exchanges) that, to a bombarding electron, each face appears to be a +1/6e charge.  
Thus, a proton appears to have a charge radius of about 4.5ü.  Now, since the 
experimental value of the root-mean-square charge-radius of a proton is 0.84 ± 0.02 fm* 
(fm = femtometer = fermi = 10-15 m), we compute the iterative spacing (the size) of ECEs: 
 

one lattice unit = l.u. = ü ≈ 0.84/4.5 ≈ 0.18 fm** 
 
* I obtained this value from Yu. A. Alexandrov, "Fundamental Properties of the Neutron" (Clerendon Press - 
Oxford 1992), p.125, which references: Borkowski, F., Simon, G. G., Walther, V. H., Weindiling, R. D., Nucl. 
Phys., B93, 461, among others. 
 
** For those of you conversant with Natural Units, this figure is suggestively close to the unit of length, 1 

GeV-1 = 0.1975 fm.  Is this just one of those strange coincidences, or is there deeper meaning?  Perhaps one 
of you will find some significance in this! 
 
 
Computerizing Particle Mass Calculations 
 
I had my first success in computing particle masses, in 1976. As I attempted to 
compute more massive particles, it became obvious that I needed a programmable 
computer to make these complex calculations feasible.  In November 1977, I purchased 
an HP 9825A Calculator, equipped with HPL FORTRAN language.  This machine, with 
its sixteen-digit printout, proved to be ideally suited for IPP mass calculations.  I still 
use it for this purpose.  For those readers who still have access to this machine, I list 
the program I developed and refined over the years on the opposing page (p. 25).   
This program, with its fixed constants, has been used for all the mass and bond 
calculations throughout the book.  Those of you who intend to use this, or to develop 
your own program, will benefit from reading the information on this page: 
 
Some thoughts in choosing the program's constants:  Although the diagonal bond is 
found in many particles (e.g. higher mass eta's, many of the psi's, chi's, upsilons, and 
all nuclei) the lone diagonal bond is found in only two particles, the eta(549) and the 
deuteride.  Neither of these latter particles seemed initially to me to be a good reference 
for calculating the constant, R.  The eta was not good, because its mass was not very 
accurately known (until 1992, LBL gave a value of 548.8±0.6 MeV, resulting in a bond 
mass uncertainty of ± 12%).   While the deuteride bond mass-deficit was accurately 
known (2.2246 ± .0054 MeV), I hesitated to use it as a reference, until recently, because 
I was confused about what phase relationships to choose between the 6-state charge-
exchange cycles of the two nucleons.  I finally resolved this uncertainty while writing 
Chapter 3, and have modified the diagonal bond constant in my computer program to 
permit it to yield the experimental value of the deuteride mass-deficit. (You will find this 
change in line 40 of my computer program, after the "if flg12;" statement.  If you study 
the program, you will see that this compensating factor applies only to diagonal bonds, 
and only for these when you have opted (in line 10) to calculate the average mass-
deficits of inter-nucleon bonds over their 6-state charge-exchange cycles (the division by 
6 occurs in line 68).  In all other modes, the program yields the calculated values shown 
throughout this chapter. 
 



 

IPP – The Quantitative Aspects of Defect-Pairs 2- 43 

Usually, a particle will have several different states (i.e. different structures), in a 
recurring pattern of charge-exchanges.  Where multiple states occur, we will give each 
state equal weight toward an average value.  It is somewhat astonishing that this simple 
rule produces results so close to the experimental mass values, for it is tantamount to 
assuming that the particle spends equal time in each state.  One might logically expect 
differences in the charge-exchange interval, when the exchanging ECEs move different 
diagonal distances, say four face-diagonal units vs. five, for successive exchanges.  
However, perhaps the refractory period between exchanges may vary in some fashion 
inverse to these exchange times. 
 
Program 2-0-1 determines a particle's mass by calculating the masses of all the 
component defect-pairs, plus the mass-deficits of all the particle's bonds, and, then, 
obtains the particle's mass, by subtracting the second from the first.  This procedure 
requires considerable flexibility in the computer program, since there are four bond 
types, paraxial, diagonal, ring-diagonal, and double paraxial.  Also, particles have a 
variety of structures, some with no bonds (e.g. pions, kaons, nucleons, tau's, D's & B's), 
and many with a mixture of bonded and unbonded defect-pairs, and there are even 
some structures where some of the defect-pairs participate in both paraxial bonds and 
diagonal bonds in orthogonal directions.  Thus, there is an occasional need to list 
defect-pair and bond spacings, but calculate only the bond mass-deficits.  I explain how 
to do this, below:  
 
The 16-character printout requires very compact nomenclature to get everything to fit.  
Here are the conventions used: 
 

p 7[ 9] 8  -0.68 
 

Key: p = type of bond* 
7 = 1st defect-pair spacing 
[ 9] = bond spacing 
8 = 2nd defect-pair spacing 
-0.68 = calc. bond mass-deficit 

 
* Bond Abbreviations: p = pb; d = db; r = rdb; P = Pb; x = nb 
 
To calculate a bond mass decrement without calculating the mass of the associated 
defect-pairs, enter "3" in line 11, choose "1" in line 26; an asterisk "*" in place of ")" 
indicates bond only. 
 
To calculate the masses of unbonded defect-pairs along with bonded defect-pairs, enter 
defect spacings this way: 0[spacing]0, or spacing[0]spacing.  To calculate particles with 
no bonds, enter  "5" in line 22.  For nuclides, calculating bond mass-deficits requires 
taking the average mass-deficit of the bond over the changing parameters of a six-state 
charge-exchange cycle.  The computer program adapts to this need, and changes the db 
constant, if you enter "1" at line 10.  
 
Table 2-12: PROGRAM 2-0-1 (Hewlett-Packard 9825A) 
 
0: "2-0-1":dsp "CALC. ALL BONDS" New Equation 4-3, 1982 LBL 
1: if Z=0;dim A$[16],B$[16],C$[16],D$[16],R[9],P$[1] 
2: 1→→→→Z;0→→→→T→→→→U;C$→→→→A$;ent "Want lines?  yes=1 no=0",A; if A=0;jmp 2 
3: prt "================" 
4: start":dsp "Particle name? =",A$;jmp 2 
5: dsp A$ 
6: ent "",B$;if B$#"";A$&B$→→→→A$;""→→→→B$;jmp -1 
7: if A$#"";prt A$;A$→→→→C$;""→→→→A$;dsp "more data?";jmp -1 
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8: if A=1;prt "================" 
9: "xpdrPN"→→→→A$ 

10: cfg;ent "6-state Nuclide M-D? yes=1 no=0",F;if F=1;sfg 8,12;jmp 2  
11: cfg;ent "Binding m only? 1,2 no=0 opt=3",F;sfg F+6;cfg 6;if flg 7;sfg 8 
12: "next":T+1→→→→T;0→→→→P→→→→W;fmt 1,f2.0,"(",c4,")",f8.2 
13: if flg7=0;gto "repeat" 
14: 0→→→→A;ent "No. p→→→→p1?",A;-5.172→→→→B;"p→→→→p1"→→→→B$;gsb "wrt" 
15: 0→→→→A;ent "No. p→→→→p2?",A;2.586→→→→B;"p→→→→p2"→→→→B$;gsb "wrt" 
16: 0→→→→A;ent "No. n→→→→n1?",A;-2.586→→→→B;"n→→→→n1"→→→→B$;gsb "wrt" 
17: 0→→→→A;ent "No. n→→→→n2?",A;5.172→→→→B;"n→→→→n2"→→→→B$;gsb "wrt" 
18: jmp 3 
19: "wrt":if A=0;ret 
20: wrt 16.1,A,B$,AB;AB+r12→→→→r12;ret 
21: "repeat":cfg 0,1,2,3,4,5;0→→→→r6→→→→r7→→→→r8→→→→r9→→→→r10→→→→A→→→→J→→→→O 
22: ent "Bond type? x=0 p=1 d=2 r=3 P=4 N=5",Q;sfg Q;A$[Q+1,Q+1]→→→→P$ 
23: if Q>5;cfg Q;jmp -1 
24: if flg4;ent "Enter d1[d2]d3[d4]d5 r1?",r1,r2,r3,r4,r5;jmp 2 
25: ent "Enter d1[d2]d3 r1?",r1,r2,r3;0→→→→r4→→→→r5 
26: if flg9;cfg 7,8;ent "Binding m only? 1=yes 2=no",A;if A=1;sfg 7,8 
27: if flg5;1→→→→J;jmp 2 
28: ent "no. of repetitions J?",J 
29: for K=1 to J;0→→→→r11 
30: for I=1 to 5;rI→→→→S 
31: if Smod2=1;3.8692712S↑↑↑↑2-19.455/S↑↑↑↑.95702→→→→r(I+5);jmp 2 
32: if S#0;3.8692712S↑↑↑↑2-70.01/S↑↑↑↑1.55316→→→→r(I+5) 
33: next I 
34: if flg5;r6+r7+r8→→→→ 
35: r2→→→→A;r1+r2→→→→B;r2+r3→→→→C;r1+r2+r3→→→→D 
36: r4→→→→E;r3+r4→→→→F;r4+r5→→→→G;r3+r4+r5→→→→H 
37: r6*r8→→→→M;if r6=0;r7→→→→r6 
38: if flg0 or r2=0;gto "calc" 
39: if flg2 or flg3;0749→→→→L;1-L+L(81/r2↑↑↑↑2)→→→→L 
40: 294.02→→→→Q;511.92→→→→R;if flg12;2.2041R/2.2246→→→→R 
41: if flg1 or flg4;(M/Q)(-1/A↑↑↑↑2+1/B↑↑↑↑2+1/C↑↑↑↑2-1/D↑↑↑↑2)→→→→N;N+r11→→→→r11 
42: if flg4;((r8+N)*r10/Q)(-1/E↑↑↑↑2+1/F↑↑↑↑2+1/G↑↑↑↑2-1/H↑↑↑↑2)+r11→→→→r11 
43: if flg4;(r6*r10/Q)(-1/(E+D)↑↑↑↑2+1/(A+H)↑↑↑↑2-1/(B+H)↑↑↑↑2)+r11→→→→r11 
44: if flg2;(M/R)2(-L/2A↑↑↑↑2)+r11→→→→r11 
45: if flg3;(M/R)4(-L/2A↑↑↑↑2)+r11→→→→r11 
46: "calc":if flg5;fmt 3,f2.0,",",f2.0,",",f2.0,",",f8.2;jmp 7 
47: if flg4;fmt 3,c,x,f2.0,"[",f2.0,"]",f2.0;jmp 6 
48: if rd11>-100;jmp 3 
49: if flg8;fmt 3,c,f2.0,"[",f2.0,"]",f2.0,"*",f7.2;jmp 4 
50: fmt 3,c,f2.0,"[",f2.0,"]",f2.0,")",f7.2;jmp 3 
51: if flg8;fmt 3,c,f2.0,"[",f2.0,"]",f2.0,"*",f6.2 
52: fmt 3,c,f2.0,"[",f2.0,"]",f2.0,")",f6.2 
53: if flg5;wrt 16.3,r1,r2,r3,r11;jmp 3 
54: if flg4;wrt 16.3,P$,r1,r2,r3,r4,r5;fxd 2;prt r11;jmp 2 
55: wrt 16.3,P$,r1,r2,r3,r11 
56: if flg5 or flg8;jmp 3 
57: r6+r8+r10+P→→→→P 
58: r6+r8+r10+W→→→→W 
59: W+r11→→→→W 
60: next K 
61: if flg5:gto "states" 
62: 1→→→→F;ent "More data? yes=1 no=0",F;if F=0;jmp 2 
63: if F#0;gto "repeat" 
64: fmt 1,"M-pairs",f9.2;if flg9;cfg 7,8 
65: if flg8;fmt 2,"Bnd-M#",f1.0,f9.2;jmp 2 
66: fmt 2,"State",f1.0,9.2 
67: if flg8=0;wrt 16.1,P 
68: if flg 12;wrt 16.2,T,(W+r12)/6→→→→W;spc ;jmp 2 
69: wrt 16.2,T,W+r12→→→→W;spc  
70: "states":W→→→→R[T] 
71: ent "More states? 9 max 1=yes 0=no",H;if H=1;gto "next" 
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72: fmt 2,"Ave. of",x,f.0,x,"states";if flg5;spc 
73: if T#1;wrt 16.2,T 
74: for I=1 to T;R[I]+U→→→→U;next I 
75: if T#1;fxd2;prt U/T→→→→U;spc 
76: dsp "Exper. value?",D$:ent "",D$ 
77: prt "Exper. Value";prt D$;spc ;if pos(D$),"?"#0;jmp 2 
78: val(D$)→→→→V;100(U-V)/U→→→→V;prt "% error",V 
79: spc ;end 

 
 
Further Proof of IPP 
 
Now, I want to show you a sufficient number of particle structures and their mass 
calculations to convince you of the validity of the defect-pair approach.  I shall use the 
simplified "charge-pattern" schematics to save space (whose conventions are explained 
in the second column of p. 2-16), rather than the more accurate portrayals of the 
"lattice-form" drawings.  You should be able to create a satisfactory mental image of 
these structures, by obtaining the defect-pair defect-spacings and bond spacings from 
the calculations.  I begin with a rather lengthy exploration of the rho resonances, to 
illustrate the procedure I followed to find structures for known particles: 
 
 
What Determines The Lifetime Of A Meson? 
 
In examining the defect-pair clustering process, we have found two modes of bonding: 
charge-exchange bonding, and mass cancellation bonding, the latter of two types, 
paraxial bonds, and diagonal bonds.  We have hypothesized that charge-exchanges are 
essential to any stable multiple defect-pair particle (i.e. those with lifetimes longer than 

1410−  seconds), and, in fact, have accepted that the only permanently stable hadron, 
the proton, has negligible mass-cancellation bonding; hence, its stability must be due 
entirely to charge-exchanges, and its infinite life to the fact that its internal electrostatic 
gradients prevent any charge-exchanges with thermal void-pairs, even those assisted by 
multiple  ambient plus & minus voids. 
 
 
Do Short-Lived Resonances Lack Charge-Exchanges 
 
If charge-exchanges are necessary to prevent clustered defect-pairs from simply drifting 
apart as a particle moves through the lattice, can we assume that short-lived 
resonances lack charge-exchange capability?  This would seem a logical deduction, if all 
resonances had the same lifetimes.  But experiments show that the resonance curves of 
short-lived resonances vary greatly in sharpness, such that the inferred lifetimes can be 
one-hundred-thousand times longer in one meson resonance compared to another (e.g. 
rho(770), full width 151.2 ± 1.2MeV vs. eta(547), full width 1.20 ± 0.11 keV.).   
 
 
Charge-Exchanges Extend Meson Lifetimes 
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To account for this lifetime variation, it seems reasonable to assume that all the meson 
resonances, except, perhaps, those with the shortest lifetimes, must have some charge-
exchange opportunities.  On the other hand, to explain the relatively short lifetime of 
the longer lifetime meson resonances, we must also assume that the geometry of the 
charge-exchanges leaves the cluster's defect-pairs vulnerable to alternative charge-
exchanges with passing void-pairs, or to electrostatic influence from passing ±voids.  To 
see how these structural differences correlate with the experimentally measured 
properties of various mesons, lets begin with the rho(770): 
 
 
Rho(770), A Meson Resonance With No Charge-Exchanges 
 
The rho(770) is a very short lifetime meson resonance (full width = 125 ± 1.2 MeV), 
which occurs in three charge states, +1, 0 ,-1.  Here is the relevant experimental data: 
 

rho(770) 1+(1- -) (LBL 1994 data) 
 

Particle Mass Width Decay 

+rho  766.9±1.2 MeV 149.1±2.9 MeV 0/ ππ+  

−rho  766.9±1.2 MeV same 0/ ππ−  

0rho (photoproduced) 768.1±1.3 MeV 150.9±3.0 MeV −+ ππ /  

0rho (other reactions) 770.8±1.2 MeV 151.9±1.5 MeV −+ ππ /  

 
 

The above decay modes ≈ 100%.  However, 11 other decay modes are seen in fractions 
from 1% to 0.0004%.  These are (# = gamma): 
 

±rho : 0/3,eta/,/# ππππ ±±±  
0rho : 000 2/2,4,/2,/,e/e,/#n,/#,/#2 πππππµµππ ±±±−+−+±  

 
 
Finding Structures For The Rho(770) Mesons 
 
Here is how one teases out a plausible rho structure from a multitude of structural 
possibilities: 
 

1) We look, first, at the meson decay products, because the simplest mode of decay 
is to separate into two fragments, through breaking of a bond.  The rho almost 
always decays into two pions, which suggests that the rho may be constructed of 
two defect-pairs. 

 
2) We reason from the fact that rhos occur in both charged and neutral forms that 

these two defect-pairs cannot be joined by a diagonal bond, since the two sub-
components of the diagonal bond must join opposite polarity defects, and, thus, 
tend to exist only in neutral particles.  Hence, we conclude that the rho is 
probably two defect-pairs joined lengthwise with a paraxial bond. 
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3) We check the data of mass vs. defect spacings (Fig. 2-12), to see whether there is 
some mass value which, when doubled, is just slightly more than the measured 
rho mass.  The rationale for doubling is that we expect the jockeying process 
during formation to tend to produce equal defect-pair spacings.  From the Fig. 2-
12 data, we see that the masses of two 10ü defect-pairs sum to 2x384.97 = 
769.94.  This seems slightly inadequate, since one of the neutral rhos has a 
measured mass 0.9 MeV above this value, but we see a way around this 
inadequate mass, because a neutral rho could also form with opposite-polarity 
defect-pairs of 9ü & 11ü spacings, which alternate as the rho moves through 
space.  These two odd-spaced defect-pairs have a combined mass of 311.04 + 
466.22 = 777.26, which seems adequate to provide for the paraxial-bond 
decrement. 

 
4) Our next task is to guess an appropriate paraxial bond spacing.  We know that 

this spacing will have to be even for a neutral rho consisting of 9s/11s pairs 
(charges = + + - -), so we can calculate mass-deficit values for various bond 
spacings, say 6ü, 8ü, 10ü: 

 

rho0(770) mass for various bond-spacings 
pb 9[ 6]11 = 10.53 mass = 777.26 - 10.53 = 766.73 
pb 9[ 8]11 =  5.26 mass = 777.26 -  5.26 = 772.00 
pb 9[10]11 =  2.99 mass = 777.26 -  2.99 = 774.27 

 
 

The above 8ü bond spacing mass value, 772.00 MeV, is just barely within the 
high-side tolerance of the experimental value, 970.8±1.2 MeV, for the neutral rho 
formed by other reactions. 
 

5) Now let us choose bond spacings for the dual 10s defect-pair neutral rho.  Here, 
we assume the charges of the four c-voids can be in any order: 
 

+ - + - , + - - + , - + + - , - + - + 
 
You will perceive that the first and last charge groups have even bond spacings.  
They obviously calculate to the same mass values: 

  
pb 10[8]10 = -5.41   mass = 769.94 -5.41 = 764.53 

 
The second and third charge groups will have odd bond spacings, which we 
should imagine alternating between 7ü & 9ü, as the particle moves through the 
lattice.  Here are the schematics: 
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We must average the two states with 9ü & 7ü bond spacings: 
 

10[9]10 = -3.14, 10[7]10 = -7.49,  969.94 -(3.14+7.49)/2 = 764.18 
 

If we assume equal abundance of all four charge groups, the average mass of the 
10ü defect-pair neutral rhos is: 

 
mass of 10ü rho0 = (764.53+764.18)/2 = 764.36 MeV 

 
This mass is too low, so we must assume that the photoproduction of neutral 
rhos may not discriminate between the even and odd defect-pair forms, but 
produces both forms in equal abundance: 

 
photoproduced rho0 = (764.36+772.00)/2 = 768.18 MeV 

1994 experimental value = 768.1 ±1.3 
 

6) Now let us turn to the charged rhos.  These must consist of a charged defect-
pair paraxially bonded to a neutral defect-pair: 

 
 

 
 
 

The rho- particles would, of course, have all the charges reversed.  You will 
observe that the 11ü→9ü alternation keeps the particle's center moving almost 
in a straight line, although the central bond zigzags back and forth.  If we 
assume that both forms are equally abundant, we simply average the masses of 
the two forms: 

 
Thus, deducing IPP structures is an analytical procedure, not a guessing game.  
Let's employ similar methods, as we look for structural changes associated with 
the radiative decays (i.e. those evolving gammas) that experiments find between 
psi(3686) and J/psi(3097): 

 
 
Psi Particles 
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In the Quark Theory, meson resonances in the mass region above 3000 MeV are 
classified mostly into the Charmonium System, that is, they are assumed to consist of 
charmed-quark-charmed-antiquark pairs.  The sharpest resonance is the J/psi(3100) 
(full width 0.088 MeV), followed by the psi(3686) (full width 0.277 MeV).  Higher mass 
relatives having roughly 100 times shorter lifetimes are psi(3770), psi(4030), psi(4160), 
and psi(4415).  Then, there are a half-dozen members of this series, of indeterminate 
lifetimes, which are inferred from a group of discrete gamma radiation energies that are 
found among the decay products of the psi(3685) and J/psi(3100).  Since these latter 
resonances are not produced directly (not coupled to n@n, or e+e-), they are labeled X, 
or eta c, rather than psi. 
 
In IPP, what distinguishes these particles from other meson resonances is not the 
possession of unique defect-pair spacings, but, rather, that they possess a 
characteristic structure:  they all are composed of four kaon subgroups, bonded to each 
other by orthogonal paraxial bonds, and, in some particles, by ring diagonal bonds.  The 
psi particles constitute all the highly symmetrical members of this group, while the X 
and eta c members have elements of asymmetry, produced when unbalanced charge-
exchanges, or "rotating" ECE exchanges, lead to lower-mass rearrangements of the 
precursor psi particles.  These rearrangements release undedicated shrinkage, which 
divides in the usual way into gamma radiation and increased particle momentum, 
allowing physicists to calculate the masses of these asymmetrical states from the 
measured gamma energies.  Most of the asymmetrical states undergo subsequent -
rearrangements, with further release of gamma, into a symmetrical, lower mass psi 
particle. 
 
Because the IPP analysis of the Charmonium Decay Series is persuasive evidence of the 
Theory's validity, we shall begin with the structure of psi(3686), so that we may show 
clearly how the rearranged intermediates are produced.  We shall simplify this analysis 
by showing only one charge-exchange state for each particle, assuming that the reader 
has, by now, sufficient understanding to imagine the charge-exchange sequences 
leading to identical mass states. 
 
If you examine the lattice-form structure of psi(3685), Fig. 2-31, you will see that we 
need to depict defect-pairs whose pairing axes are perpendicular to the plane of the 
paper.  We will use the same conventions for these defect-pairs. as we did in Figs. 2-27 
& 2-28: 
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The exact agreement of this mass with experiment, we should recall, results from 
choosing this particle as our diagonal ring-bond reference standard (See Fig. 2-31).  
Notice, also, that this structure is perfectly symmetrical, and not asymmetrical, as 
QCD's quantum numbers would indicate.  This discrepancy may be attributed to 
QCDeists deriving their classifications from the symmetry, or asymmetry, of the particle 
breakup, rather than from the symmetry, or asymmetry, of the particle's components, 
as IPP does.  It seems obvious that only IPP's perfectly symmetrical structure is 
consistent with the psi(3685)'s long life, compared to the short life of X's. 
 
Transition of the psi(3685) to X(3555) results from the induced separation of the four 
"kaon" groups by 2ü, which provokes a rotation & spacing-change to 9ü of one z-axis 
defect-pair: 
 
 

 
 
 
You will notice that this structure is asymmetrical, whereas the assigned quantum 
numbers would indicate complete symmetry.  If, instead of expanding, the central 
spacing of the four "kaon" subgroups shrinks, the same rotation yields the X(3510): 
 
 

 
 
 
These above decays are induced by particle translation normal to the plane of the paper.  
A central charge-exchange, tending to increase the particle mass, could result in two 
rotations, yielding: 
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A subsequent central charge-exchange, tending to increase the mass of the x(3415), 
could induce two more rotations, yielding the perfectly symmetrical & planar structure 
of J/psi(3100): 
 
 

 
 
 
This same form can derive from the X(3555) by three additional rotations, and from the 
X(3510) by expansion and the same three rotations.  Although the calculated mass for 
the J/psi(3100) is not within experimental tolerances, it is nevertheless within .01% of 
the center value.  This seems remarkably close, considering that the reference particles 
used to set the constants of calculation are so substantially different in geometry from 
this particle. 
 
With its alternating charge distribution, and perfect symmetry, this form has abundant 
charge-exchange opportunities and excellent chances to move intact in any direction 
through the lattice.  Hence, it seems reasonable for it to have a long lifetime, compared 
with its more asymmetrical precursors. 
 
Now, to round out the psi's, here are the least & most massive.  Notice that eta c(2980) 
forms from J/psi through a  single external charge-exchange provoking a central dual s-
slant charge-exchange: 
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The psi(4415), like the other three-axis psi's, is a perfectly symmetrical structure.  It 
differs from the psi(3685)'s by having A-slant kaon sub-groups, rather than S-slant; this 
causes the centers of the z-axis defect-pairs to be displaced 1ü from the centers of the x 
& y defect-pairs, hence, the even (10ü/) ring-bond spacings: 
 
 

 
 
 
Possibilities For Sixteen-Defect-Pair Structures 
 
We can imagine several symmetrical arrangements for particles comprised of sixteen 
defect-pairs:  Planar arrangements of eight expanded kaon groups, represented by side-
by-side B particles, and, in addition, cruciform or swastika patterns.  Two-plane 
arrangements, comprised of two planar psi particles, spaced apart in, say, the y-
direction, offset in the x-direction so that diagonal bonds can form between all the z-axis 
defect-pairs in the two planes. 
 
However, the arrangement which seems most plausible to me, because it has the most 
spherical arrangement of the sixteen defect-pairs, is one comprised of two ring-bonded 
psi particles, one above the other, the two psi particles bound together by four paraxial 
bonds between the two groups of ring-bonded defect-pairs. Let us try out this structure 
on the upsilon(9460) to see if plausible defect-pair spacings can yield the correct particle 
mass.  We can illustrate this particle by our usual conventions, if we show each psi 
separately:   
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Notice that the central defect spacings of the two psi groups must correlate with the 
spacings chosen for their ring-bonded defect-pairs if the defect-pairs of the kaon sub-
groups are to have a common center of mass, whereas the intergroup bond spacing is 
arbitrary.  We are free to adjust it to obtain a particle mass closest to the experimental 
value, although, for this choice to be persuasive, it needs to be plausible in relation to 
the intergroup bond spacings chosen for other particles in the upsilon family.  Also for 
intergroup paraxial bonds to have maximum stability, the inner defects should have 
opposite polarity; hence we should choose only even spacings for the intergroup paraxial 
bonds. 
 
Now, let's look at the heaviest upsilon.  Since this meson has the same structure as Fig. 
2-40, except for the defect-pair and bond spacings, I shall show just the consolidated 
data of the calculation: 
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We should not be surprised that the last two mass calculations stray somewhat from 
the experimental values.  Such large bond mass-deficits are a severe test of the paraxial 
and ring bond constants, which were developed from particles with much smaller 
bonding mass deficits.  Notice, however, that both calculated masses are rather close:  
 

0.59/9460.37 = +0.017%  3.70/11019 = +0.034% 
 
I have calculated masses for many more resonances over the last two decades, but I will 
spare the reader all these details, since those who are truly interested will now have 
acquired enough IPP tools to explore structures on their own.  However, I would be 
remiss if I failed to show you structures for the Xi & Omega hyperons.  I begin with the 
Xi0, which has charged & neutral core possibilities: 
 
Note: solid tabs = state #1, dotted tabs = state #2   
 
 

Fig. 2-42 Xi0(1314)  (+1e core, -1e outrigger c-voids) 
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We should expect three forms of the neutral Xi, one with +1e charge core, and -1e 
charge outriggers (like Fig. 2-42), one with -1e charge core, and +1e outriggers (inverse 
structure of Fig. 2-42), and one with neutral core and neutral outriggers (like Fig. 2-43).  
If these are equally abundant, then the  calculated mass should be: 
 
 (2*1314.47+1316.05)/3 = 1315.00 vs. Exper. = 1314.9±0.6 MeV   
 
 

Fig. 2-43  Xi0(1314) (neutral core, neutral outrigger c-voids) 
 

 
 

 
The charged Xi's will, of course, be found in both plus and minus charge states (only 
minus shown in Fig. 2-44), but both of these will probably need to have neutral cores 
and  ±1e charge outriggers for stability, since this permits the more balanced K0 type 
charge-exchanges in the core.  Notice that we must assume that the outriggers undergo 
a K± type charge-exchange to obtain the correct mass.  Notice, also, that the z-defect-
pair shifts ±1ü/ each charge-exchange. 
 
 

Fig. 2-44  Xi-(1321) (neutral core, -1e outriggers) 
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The omega minus hyperon has a structure with three mutually orthogonal paraxially-
bonded pairs of defect-pairs of rather disparate defect-spacings.  The correct mass 
calculation requires dual K0 charge-exchanges of just four of the core c-void defects.  It 
may be of interest to notice that similar simultaneous charge-exchanges of the yz 
outrigger defects could also be added without changing the State #2 mass.  This lends 
credence to the Xi- outrigger charge-exchanges.  
 
 

Fig. 2-45 Omega-(1672) (neutral core, -1e outriggers) 
 



 

IPP – The Quantitative Aspects of Defect-Pairs 2- 57 

 


	Infinite Particle Physics
	Why Defect-Pairs Are Of Vital Importance To IPP
	Some Basics Of Defect-Pair Formation
	Some Basics Of Defect-Pair Clustering
	The Structure Of A Collapsed Void Defect (Hereafter C-Void)
	Fig. 2-1 C-Void Pattern Viewed Normal to its Plane of Symmetry
	
	
	Fig. 2-2 C-Void Pattern Viewed Parallel to its Plane of Symmetry



	We Define "Rays", And Explain Their Significance
	Infinite Shrinkage Required For A Lone C-Void Defect
	Pairing Of C-Voids Leads To Finite Shrinkage Requirements
	A C-Void Has Diagonal Zones Of Contraction & Expansion
	Maximum Contraction/Expansion Is In Vicinity Of Rays
	Fig. 2-4 7ü Defect-Pair Viewed Parallel to Pairing Axis
	Why Paired C-Voids Seek Cardinal Alignments
	It Takes Three Parameters To Specify A C-Void
	Fig. 2-5  "Lattice-Form" Diagrams of Slant Types
	Avoiding Confusion In Slant Designations
	What Determines The Slant Of C-Voids?
	How Much C-Void Shrinkage Is Canceled In Defect-Pairing?
	How Does The Residual Shrinkage Vary With C-Void Spacings?
	Discovering The Masses Of Defect-Pairs
	This Analysis Is Based Upon Four Assumptions
	Choosing The Number Of Defect-Pairs In The Most Stable Hadrons
	
	
	
	Particle Class




	Table 2-2: C-Void Charges of Pions
	
	
	
	Particle




	Determining Defect Spacings Of Clustered Defect-Pairs
	
	
	Table 2-5: Integer Ratios of Particles



	Choosing Specific Defect-Spacings
	
	
	
	Structure




	Validating Our Chosen Spacings
	
	
	Table 2-7: Computing Constant, K, for Kaons
	Fig. 2-6 Charge-Exchange States In Neutral Kaons
	Fig. 2-7 Charge-Exchange States Of Plus Kaon



	Forming A Mental Picture Of Charge-Exchanges
	Calculating The Mass Vs. Defect Spacings Of Defect-Pairs
	
	
	Table 2-9 Mass Data Thus Far
	Table 2-10: Defect-Pair Mass vs. C-Void Spacings



	Fig. 2-10 Plot Of Table 2-10 Values
	Deriving An Equation Of Mass Vs. C-Void Defect Spacing
	Fig. 2-11 Plot Of Equation 4-2
	Fig. 2-12 Plot Of Equation 4-3
	The Mass, m, Of Defect-Pairs Vs. Defect Spacing, d
	Equation 4-3
	Testing Equation 4-3
	
	
	Fig. 2-13 Meson Resonance Structures



	Bonding of Defect-Pairs Derives From Residual Distortion
	
	
	Fig. 2-18 The Two Kinds of Strong-Force Bonds



	The Geometry of Paraxial Bonds
	The Paraxial Bond Mass-Deficit Equation
	
	
	Equation 5-2
	where: a = d2, b = d1+d2, c = d2+d3, d = d1+d2+d3



	Experimental Habits Prevent Determining Accurate Bond Constants
	Gaining Insight into the Mechanics of Charge-Exchanges
	How Hyperons Form - Understanding Associated Production
	
	
	Fig. 2-27 Structural Forms of Deltas & Sigmas
	Fig. 2-28 Structural Forms of N Baryons & Lambdas



	Typical Sigma & Lambda Production Scenarios
	
	
	Fig. 2-29 Understanding Associated Production



	IPP's Concept of "Strangeness"
	Why Grain Boundary Passage Can Reverse Slant Directions
	Some Aspects of Diagonal Bonds
	Calculating the Mass-Deficit of Diagonal Bonds
	Resolving an Ambiguity Between Single and Ring Diagonal Bonds
	
	
	
	
	Equation 5-3





	Choosing the Constant, R, for Single Diagonal Bonds
	
	
	
	
	
	Table 2-11: Calculation of Deuteride Mass-Deficit






	The Necessary Multiplying Factors
	The Size Of ECEs, Or More Properly,
	The Iterative Spacing Of Eces In The Simple Cubic Lattice?
	Computerizing Particle Mass Calculations
	Further Proof of IPP
	What Determines The Lifetime Of A Meson?
	Do Short-Lived Resonances Lack Charge-Exchanges
	Charge-Exchanges Extend Meson Lifetimes
	Rho(770), A Meson Resonance With No Charge-Exchanges
	
	
	
	
	
	Width






	Finding Structures For The Rho(770) Mesons
	Psi Particles
	Possibilities For Sixteen-Defect-Pair Structures

