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Infinite Particle Physics

Chapter 1 � Quantum Effects Explained 

In this chapter I explore many of the neglected "what?", "why?", and "how?" questions of 
quantum and particle physics from the perspective of a particulate ether.  I show you 
ways to visualize the structures and mechanisms of gravity, mass, energy, charge, spin, 
momentum, forces, wave-particle duality, matter, antimatter, the structures of photons 
& leptons, and how to understand why energy is conserved, and why phenomena are 

indeterminate.   In Chapter 2, I offer a quantitative defect-pair cluster concept of hadron 
particles, as a plausible alternative to QCD.  Chapter 3 shows how to calculate the 
mass-deficit of inter-nucleon bonds, while Chapters 4 & 5 show how these paraxial and 
diagonal bonds produce the complex structures of large, and small nuclei, respectively.  
Chapter 6 explores particle decay, Chapter 7, particle creation, and Chapter 8, 
cosmological implications of an ether theory.  Finally, in Chapter 9, I discuss my 
theory's value, limitations, tests, and applications. 

Fortunately for this work, physicists are becoming used to a particulate space.  For 
example, QCD needs a space filled with Higgs particles, Superstring Theories, a space 
filled with poly-dimensional "strings", and Cosmology, a space filled with "dark matter".  
But each of these disciplines requires its space to be filled with countless other 
fundamental particles.  My approach differs markedly from these: 

My underlying premise is that all the phenomena of physics result from the interactions of 

just two fundamental particles, the opposite-charge, ion-like, elemental charge entities

(hereafter, ECEs) which comprise a solid polycrystalline ether.  Or, stated more simply: 

All Physics derives from the interactions of ECEs!

You will realize that a theory based upon this premise will differ from current theories 
as radically as Copernicus' heliocentric theory differed from Ptolemy's.  For example, we 
will perceive an ether's matter as various infinitely-extending dynamic distortions 
patterns centered about defects in the space lattice, rather than being infinitesimal bits 
of ad hoc somethings.  Energy will be perceived as drifting, infinitely-extending lattice-
density oscillations.   And an ether�s fields, rather than being streams of virtual 
particles, will be perceived as radial variations in the compactness and displacements of 
ECEs about any point in space.  Forces result from the in-and-out lattice pulsations of 
matter interacting with these radial variations. 

Explaining these concepts requires pedagogy vastly different from the conventional 

mathematical treatment.  Our objective is to try to understand the mechanisms of 
physical phenomena, and this objective requires creating word-pictures and three-

dimensional drawings, so that you can form mental images of these mechanisms.  
Prepare yourself for weird, fantastic ideas, whose plausibility will only gradually become 
apparent, as I demonstrate their ability to explain the quantum mysteries enumerated 
in the first paragraph.  The hard evidence of my theory's validity won't appear until the 
second chapter.  There you will find accurately scaled structures of numerous meson 
and baryon resonances, accompanied by mass calculations that often match experiment 
within ±0.01%.  Also, in my third chapter, I show how my theory permits calculating the 
mass-deficits of simple nuclei accurate to ±0.02 MeV. 

I begin, now, by laying the groundwork of my theory: 
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Why Physics Needs An Ether 

1) Because energy can't create matter out of nothing:  We know that impinging 
oppositely-directed photons can create matter in a vacuum.  A plausible 
explanation for this is that "empty" space contains the "ingredients� of matter 
(ECE's) which rearrange geometrically in the presence of arrested energy to 
produce matter. 

2) An ether is needed because emptiness can't wave:  All particles manifest wave 
phenomena.  Electromagnetic waves, & de Broglie matter waves are precisely 
modeled in mathematical expressions, but this begs the question of how these 
waves get from one place to another in total emptiness.  A particulate space 
solves this dilemma, by providing an interactive medium in which wave 
phenomena can propagate.  

3) Because an ether can explain forces better than current theory:  Suppose 
that "empty" space is completely filled with ion-like granules, which we shall call 

elementary charge entities (ECEs), that arrange themselves into a polycrystalline 
space lattice.  Being intimately related through mutual attractions and 
repulsions, ECEs could interact with each other in a manner which permits 

them to transmit signals, rather than being required to move bodily from the 
transmitting particle to the receiving particle, as current theory requires.  Thus, 
local lattice displacements due to the formation of matter, its movement, or its 
releases of energy, can be transmitted uniformly in all directions as a 

geometrically determined pattern of inverse-square-decremented ECE 
displacements.  In this three-dimensional matrix of opposite-polarity ECEs, no 
ECE granule needs to move more than a fraction of its diameter to transmit 
these signals, and an infinite number of signals from all directions of space can 
pass through any locality of the lattice without interference, their instantaneous 
amplitudes of displacements merely summing vectorily to form dynamic lattice 
distortion patterns in each locality of space.  These patterns typically exhibit 
radial ECE-density asymmetries about any point in space.  These ECE-density 

variations & ECE-charge displacements constitute an ether's force fields.

4) An ether is needed to reduce the numbers of fundamental particles:  The 
current theory of particles, Quantum Chromodynamics, requires at least sixty-
two fundamental particles to explain everything which has been discovered in 
high-energy particle experiments.  There is no hope of reducing these numbers if 
we imagine each of these particles as lumps of something existing in a vacuum.  

But if we can conceive of them as various structures produced in the space 
lattice of an ether by different arrangements of ECEs, we can use creative 
imagination to construct all these structures (or their functional equivalents) 
from the two elementary particles which comprise our postulated ether. 

5) An ether is needed to explain quantum mysteries:  Concepts like gravity, 
charge, mass, energy, spin, indeterminacy, Pauli's exclusion principle, 
strangeness, associated production, etc. can be understood only as dynamic 
patterns  and patterns require a continuous medium, like an ether, in which to 
manifest themselves. 

Now, let's see how my theory answers two quandaries that baffled former ether 
theorists: 
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How Can Matter Move Through A Solid Space? 

Matter movement through a solid space is a problem only when matter is considered to 
be something different from, or in addition to, space.  My ether theory defines matter as 

a continuously expanding dynamic distortion pattern in the space lattice centered about a 

"hovering" lattice defect (or defect cluster). Thus, matter movement merely involves the 
movement of lattice defects, and this can occur step-by-step through exchanges of 
ECEs, much like hole-current in a semiconductor. 

Why Are Particle Properties Constant Over Time? 

Because ECEs repel and attract each other, any local disturbance creates a spherical 
wave of ECE displacements which propagates in inverse-square fashion to infinity.   

Thus, an inescapable fact confronting our theory is that phenomena can have no 

boundaries!  Experiments tell us that all particles are localized, yet cold logic tells us 
that every newly created phenomenon must spread out continuously towards infinity.  
How can it be, then, that a particle's properties remain precisely the same over 
millennia?  Here is why: 

When a particle is created, the expansion of its distortion pattern is fueled by the ECE-

displacement energy released by the collisions or annihilations of precursor particles.  Let 
us ask ourselves where this released energy resides.  It is obviously not localized at the 
collision center, but will, rather, be distributed throughout the infinitely expanding 
distortion patterns of the precursor matter and energy.  And, because every distortion 

pattern expands at an identical rate, and contains a similar radial distribution of mass-
energy, particle decay extends over infinite time, and continues to transfer exactly the 
correct amount of mass-energy at each radial increment of expansion required by its 
replacement. 

We can conclude two things from the above explanation: 

1) Because the expanding periphery of a particle never needs to draw mass-energy 

from its interior, its central mass-energy density is unaffected by its pattern 

growth. 

2) Because all ether phenomena propagate at the same rate, no experimental 

interrogation of a particle's center can ever catch up with its fleeting boundary, 

so all particles appear infinite in size, from inside to outside. 

 Now let us ask a fundamental question: What properties for its ECEs should 
Infinite Particle Physics (hereafter IPP) adopt to explain all phenomena?  Here is 
what I propose: 

Defining The Characteristics Of ECEs Suitable For An IPP 

The elemental charge entities (ECEs) comprising our proposed ether are postulated 
to be the only constituents of the universe; hence, their properties, or 
characteristics, cannot be derived from anything more fundamental, so they must be 
chosen by the theorist (inferred by hindsight) to allow space to engender all the 
phenomena of physics.  Here's what works: 
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ECE Properties Necessary To A Workable Ether Theory 

ECEs are spherical, incompressible, and extremely resistant to spheroidal 
distortion. 

ECEs have a diameter approximately equal to 0.2 fermi (this dimension is 

obtained from the experimentally determined charge radius of the proton, and 
IPP's proposed proton structure, which will be explained in my second chapter). 

ECEs have a "charge" of ±1/2e, i.e. half an electron's or positron's charge. 

Opposite-polarity ECEs attract each other, and are nearly always in intimate, but 
non-adhesive, contact (i.e. ECEs are free to roll around or slide by each other 
without friction, or energy loss). 

Like-polarity ECEs repel each other, but are constrained by two things: 1) each 
ECE is in intimate contact with (usually) six opposite polarity ECEs, and 2) the 
universe is presumed to be "overfilled" with ECEs, so they have no place in 
which to expand. 

ECEs differ only in the characteristic of "charge".  All other characteristics of 
opposite-polarity ECEs are identical. 

ECEs have inertia, the evidence for which is: ECEs constitute an interactive 

medium, whose speed of interaction is obviously finite.  This speed must be 
several times the speed of light, to permit light to propagate at light speed, as we 
shall see. 

ECEs must be capable of forming a crystal lattice, i.e. opposite-charge ECEs must 

not annihilate each other, even when in intimate contact.  The infinite lattice of 

the cosmos must obviously be polycrystalline, rather than a single crystal.  The 

average size of these space crystals is unknown, but experiments may reveal it. 

ECEs must be so abundant in the universe as to preclude the formation of a 
perfect simple cubic lattice (the structure of "empty" space), yet not be so 
abundant as to allow much formation of space in the body-centered crystal 
lattice state (the internal structure of black holes).  Designing a creation scenario 
capable of producing this slightly over-filled ECE condition is daunting, but not 
inconceivable.  A Big Bang creation is inappropriate, but IPP's concepts for 
neutrinos and photons provide plausible explanations for redshift & cosmic 
microwave background radiation, and its concepts for neutron creation may 
yield the observed hydrogen/helium ratios! 

Some Implausibilities About The Above ECE Characteristics 

Of course, what is left unsaid in this list is how preposterous these specifications are!
What is the meaning, if any, of attributes like "charge", "attraction", "repulsion", & 
"inertia" when these terms are assigned to the fundamental building blocks of the 
cosmos?  How can anything be both "ion-like" and an "incompressible sphere"?  How 
can opposite charge things be in intimate contact, and not discharge each other?  How 
is "repulsion" between like-polarity ECEs transmitted across the gap between them?  
How could entities like these arise in such abundance in the cosmos?  I'm sorry, but I 
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don't have a clue!  My only excuse for thrusting these implausible concepts at you is 
that, quite miraculously, they work.  Perhaps some day we may understand these ECEs 
from some sub-ether perspective.  In the meantime, we tiptoe quietly ahead: 

Some Implications Of These ECE Specifications 

Since the ether is postulated to be infinite in extent, these excess numbers of ECEs 
cannot result in expansion of the universe; instead the ECEs will be jammed together in 
a manner which will distort the lattice cells from cubic into a rhombic form occupying 
less volume.  Our term for this density-increasing effect of excess numbers of ECEs will 
be shrinkage, since it results in each distorted lattice cube occupying less cubic 
volume. 

Shrinkage Is The Crucial Concept Of IPP 

Although it will not be immediately apparent, shrinkage is the crucial concept of a 

workable ether theory.  Shrinkage produces a condition of universal lattice instability, 

where no part of the ether lattice can be in complete equilibrium.  Thus, shrinkage 

provides the motive power for the dynamic events of our universe. It creates the ECE-
density oscillations we associate with energy and with particle motions, and it is 
essential to the formation of the "hovering" defects and defect clusters we associate with 
matter.  Also, postulating a shrunken lattice, in which opposite-polarity ECEs are 
always in contact, explains why atoms have the same properties wherever they are 
observed in our universe.   Finally, because every phenomenon utilizes shrinkage (every 

distortion pattern shrinks the lattice) we can assert that shrinkage = mass-energy, and, 
since universal shrinkage is inherently conserved (it is determined solely by the volume 
of the infinite universe compared to the number of ECEs therein), we can perceive why
mass-energy is conserved. 

How Shrinkage Produces Phenomena 

Shrinkage is manifest as rhombic distortion in the simple cubic lattice of IPP's ion-
like ECEs.  You will immediately see that the rotational ECE displacements creating this 
rhombic distortion could be stable only if they were identical throughout the entire 
universe.  Otherwise, wherever points of greater rotations occurred, there would be 
unbalanced accumulations of repulsions between like-polarity ECEs, which would tend 
to spread into surrounding areas of lesser rotations, causing the ECEs of the first area 
to "unwind". 

However, if ECEs have "inertia", these unwinding adjustments cannot take place 
instantly; rather, any unwinding will tend to produce a condition of rapid central 
rotation with zero central torsional misalignments (i.e. zero central shrinkage), 
immediately followed by winding up in the opposite direction, thereby recapitulating the 
initial degree of rotational misalignment and central shrinkage density.  So, instead of 
producing equalized ECE torsional rotations throughout space, local rotational 

disequilibriums tend to manifest themselves as countless discrete point-centered 

spherical lattice-density oscillations, creating spherical shrinkage patterns. 

Lattice defects also cause local disequilibriums in the ether, which propagate outwardly 

to infinity, so they, too, result in point-centered, spherical shrinkage patterns. 
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Two Kinds Of Shrinkage Are Necessary To IPP 

It is quite apparent that a center of spherical shrinkage must remain static in the 
space lattice, whether manifest in spherical lattice-density oscillations, or in spherical 
distortion patterns created by lattice defects.  Yet our universe is not static, but 

incredibly dynamic, with matter and energy whizzing about us in all directions.  What 

concept are we missing, that could explain this dynamicism? 

The answer is: hemispherical shrinkage!  This is a very simple notion, but perhaps one 
not immediately self-evident.  Its roots lie in a well-documented phenomenon in particle 

interactions, namely, that total particle momentum is always conserved. 

How I Arrived At The Concept Of Hemispherical Shrinkage 

I arrived at the notion of hemispherical shrinkage by analyzing a typical particle 

interaction from the perspective of lattice shrinkage, specifically, the mutual annihilation 

of an electron with a positron, yielding a pair of oppositely-directed photons.
Here were the analytical steps: 

1) The merging of matter and antimatter "heals" the lattice, releasing a "blob" of 
energy at the annihilation point. 

2) IPP perceives this energy as a point-centered lattice-density oscillation, which 
immediately expands toward infinity, drawing its increasing demands of 

spherical shrinkage from the decaying residues of spherical shrinkage implicit in 

the collapsing distortion patterns of an infinite series of precursor phenomena. 

3) However, there is always a complication in annihilations:  Being oppositely 
charged, the annihilating particles accelerate towards each other, thereby each 
gaining increasing components of momentum from the mutual cancellation of 
each other's charge fields.  Although I did not yet understand what momentum 

was in an ether, it was clear that the annihilation shrinkage could not be strictly 

spherical, but it would, rather, have some form of "momentum protrusion", due to 

fact that the absolute momentum of the two annihilating particles could never be 

precisely equivalent. 

4) Clearly this non-spherical component of shrinkage was inappropriate for a 

spherical lattice-density oscillation.  A spherical LD oscillator couldn't utilize this 
"momentum protrusion"; hence, this protrusion would be required to spawn 

some other phenomenon. 

5) Since this annihilation shrinkage would tend toward an ellipsoidal shape, I 

wondered if, perhaps, an ellipsoidal lattice-density oscillation would form, instead 

of a spherical one.  But this idea had a severe problem: an ellipsoidal oscillation 

could be sustained only as a moving phenomenon, which meant that 

synchronous moving shrinkage would be required to sustain it.  And a centered
ellipsoidal oscillation was a contradiction, because it obviously couldn't move in 

both directions without splitting itself apart! 

6) At this point, the solution became obvious: The distorted shrinkage must split 

progressively into two hemispherical parts, and spawn two ellipsoidal ECE-density 
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oscillations, each moving away from the other in opposite directions!  And, since 
the end products of our scenario, above, are two photons, these ellipsoidal 
ECE-density oscillations (hereafter lattice-density oscillations, or LD 
oscillations) must represent the phenomenon of a photon. 

This imagined scenario was thus the origin of the notion, "hemispherical shrinkage = 
ellipsoidal LD oscillation = photon = radiant energy".  Now, let's dig deeper into our 
new concept for a photon, and the nature of the hemispherical shrinkage by which its 
ellipsoidal oscillation is nourished: 

The IPP Concept Of A Photon's Structure 

A Photon is a soliton in IPP, but of a unique structure.  It is a continuously expanding 
ellipsoidal LD oscillation, whose central ECE density waxes and wanes periodically, and 
whose aspect ratio (the major to minor diameter ratio of its first node) forces its period 
of maximum central density to step through the lattice at the speed of light.  Its 

maximum central ECE density (its energy) determines the frequency of its ellipsoidal 

lattice-density oscillations, which, in turn, determines its step distance (wavelength*).  
Photons are produced either as oppositely-directed pairs, or singly, with an equal, and 
opposite, component of momentum attaching to ambient particles.  Very rarely, more 
complex scenarios ensue.  However, in every case, they are produced by the process 
given in the next paragraph: 

* Since we know that a photon's wavelength scales inversely with its energy, we deduce that the size of a 

lattice-density oscillator's first node must scale inversely with its frequency.  I will explain why, later, when I 

describe the structure of an LD oscillator. 

Fig. 1-1 Cross-Section of a Moving Photon's First Nodes 

How Photons Are Formed 

Photons are formed as an artifact of the progressive bisection (from its center 
outwardly) of a point-centered zone of (nearly) spherical shrinkage.  One can also say 
that the splitting of spherical shrinkage occurs because it has spawned two oppositely-
directed, and unceasingly-expanding ellipsoidal lattice-density oscillations, each moving 
away from the center of spherical shrinkage at the speed of light.  So, we must perceive 

that progressively-expanding hemispherical shrinkage and photons are inextricably 

linked  each produces the other.  Because of this linkage, we can infer that the moving 
centers of both phenomena must always "track" each other, and must have identical 
mass-energy. 
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Thus, a photon develops with its ellipsoidal LD oscillator shrinkage centered in the 

moving center of mass-energy of an expanding zone of hemispherical shrinkage, and, 
hence, must adjust its degree of ellipticity so as to move at this same speed.  Because 
the rate of bisection of spherical shrinkage is a fundamental property of the space 
lattice, all zones of hemispherical shrinkage, regardless of their mass-energy density, 

expand at the same rate; hence, all photons, regardless of their energy, step through 

space at same speed, c.  Also, since the periphery of hemispherical shrinkage inherently 

expands at several times the speed of its center of mass-energy (i.e. its center of 
shrinkage*), we perceive that lattice-density signals must propagate at several times 
the speed of light. 

* Because point-centered shrinkage scales as 1/r², we should see that the moving center of mass-energy of an 

expanding hemisphere of shrinkage lies closer to its center of curvature than does the center-of-mass of a 

solid hemisphere (3r/8). 

IPP's Photon Structure Explains Quantum Enigmas 

This photon structure, along with its creation scenario, has great power to illuminate 
many photon mysteries: 

Its structure shows us why a photon is both particle and wave (it is both point-

centered and an ever-expanding oscillation). 

The fact that its lattice-density waves propagate in and out at several times the 

speed of light explains why its center can step along at the speed of light. 

Because they derive from a splitting process, we can understand why pairs of 

photons head in opposite directions. 

Because of its effectively infinite size and because its mass-energy (shrinkage) is 

distributed in equal radial increments to infinity*, we can understand why a 

photon's center can pass through one pinhole, while its distortion pattern can go 

through an adjacent pinhole at the same time, and even through the metal (with 

delay) that the holes are punched through.  This readily explains how a photon 

can interfere with itself! 

* This is because ECE displacements = shrinkage = mass-energy, and because ECE displacements of 

point-centered distortion patterns scale as 1/r², while the numbers of displaced ECEs scale as r². 

Being a diffuse & ever-expanding oscillation, a photon can take both paths 
through partially-reflecting mirrors, or pass around both sides of a distant 

galaxy.  These attributes also give a photon homeostasis, allowing it to recover 
from transient interactions of its center with other phenomena; thus, it 
maintains a linear trajectory. 

Because point-centered LD oscillations require rotations of opposite-polarity 
ECEs at their centers, and these rotations influence the entire oscillatory 

structure, photons exhibit polarization. 

Because pairs of photons derive from an unceasing shrinkage-splitting process, 
and because their LD oscillations propagate at several times light speed, we can 
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understand why created pairs of photons maintain correlated polarizations as they 

separate. 

Because they lack hovering defects at their centers, photons do not have spin. 

We Pause To Define A Few Of IPP's Terms 

It is inevitable that many physical terms in common use will come to have new 
interpretations in IPP.  Here are some examples: 

energy: A point-centered oscillation in the density of ECEs; usually referred to as a 
lattice-density (or LD) oscillation. 

particle rest mass: The "static", or spherical shrinkage component of a particle's 
hovering LD oscillator. 

particle mass-energy (mc²): The total shrinkage captured by the particle's defect(s) and 
its(their) hovering oscillator(s). 

matter: An ever-expanding dynamic lattice distortion pattern, centered on a hovering, 
drifting lattice defect, or defect cluster. 

anti-matter: Precisely the same distortion pattern as its matter equivalent, except that 

corresponding ECEs in this infinite pattern are of opposite polarity. 

leptons: Particles whose core defects are uncollapsed voids, out-of-place ECEs, or 
excess ECEs. 

hadrons: Particles whose core defects are collapsed voids (c-voids), joined together in 

pairs of opposite expansion/contraction orientation.  Paired c-voids have quantized

defect spacings, which vary from 5  15 lattice units, and which scale with cluster size 

and complexity.  C-void defect-pairs cluster together in various numbers from 1  16 to 
form the hundreds of known meson and baryon resonances. 

particle creation: The production of defects by rotation of ECEs past a "toggle" point at 
the center of a vigorous LD oscillation. 

annihilation: "Healing" the lattice of defects in the interaction zone by rotational 
exchanges of opposite-polarity ECEs. 

What Sets The Magnitude Of "Captured" Shrinkage? 

The minute amount of primordial shrinkage captured by each of these lattice-density 
oscillations, whether ellipsoidal, or spherical, will be in proportion to the maximum 
angle of torsional rotations manifest by their central ECEs, which, it would seem, can 
take any value (although more central ECEs will undoubtedly need to rotate to produce 

the high central densities associated with very high energy photons).  This lack of 

discrete quantized values of oscillatory shrinkage is consistent with our notions of both 

radiant and kinetic energy, but this variability is inconsistent with our concept of mass, 

which we have identified as the spherical component of the LD oscillations effecting a 

defect's hovering.  Let's explore this puzzle: 
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Why Hovering Shrinkage Is Quantized In A Non-Drifting Defect 

The spherical shrinkage component of a defect's hovering oscillator is quantized, 

because the energy of a non-drifting hovering oscillator is precisely the amount required 

to cause a defect to hover back and forth incessantly between two adjacent lattice 

locations.  If there were less shrinkage than this quantized amount, the defect could not 

have formed (since ECE rotation is implicit in defect formation); if there were more
shrinkage, the excess shrinkage would have bisected into two zones of hemispherical 
shrinkage, one of which would have attached to the hovering oscillator, causing it to 
drift.  IPP's term for this quantized spherical shrinkage component of a hovering 
oscillator is: mass shrinkage.

Defect-Bound Shrinkage  The Other Quantized Component 

When a lattice defect forms, as a result of annihilation-released spherical shrinkage, it 
creates local lattice asymmetry and local charge disparity.  Both of these disturbances 

alter the balance between attraction and repulsion of the ECEs in its vicinity, causing 
these ECEs to seek new equilibrium locations in the space lattice.  These local 
deviations from orthogonality create higher local ECE densities, and progressive waves 
of disequilibrium, which are coupled from ECE to ECE outwardly, forming a lattice 
distortion pattern of shrunken space, which lessens in inverse-square fashion toward 
infinity.  Since these displacements are purely geometric responses unique to each 

defect's characteristics, we can conclude that each defect type captures a quantized 

amount of lattice shrinkage in its infinite distortion pattern.  IPP terms this defect-

induced component of a particle's total shrinkage, geometric shrinkage. 

Thus, we see that a hovering defect, when in a non-drifting state in absolute space, has 
just two components of mass-energy, geometric shrinkage, required by defect's "static" 
distortion pattern, and mass shrinkage, required by a non-drifting defect's hovering LD 

oscillator.  Both shrinkages are quantized.  This conclusion that non-drifting hovering 

defects bind quantized amounts of primordial shrinkage leads us to identify hovering 

defects as matter. 

Why A Particle's Mass-Energy Greatly Exceeds Its Mass 

The total sum of shrinkage released when a particle is annihilated (its mass-energy, 

mc²) greatly exceeds the mass shrinkage (i.e. that due to its mass, m).  What appears to 

be true is that the geometric shrinkage utilized in forming a defect's geometric displace-
ment pattern moves freely through space at no energy cost, except for a minute amount 
implicated in a particle's spin (more about this later).  Or, if we put this assertion in 

more conventional terms, the entire inertial mass of a particle seems to reside in the mass 

shrinkage component of its bound hovering LD oscillator.  Here is why this could be true: 

When a particle is viewed as an infinite pattern whose mass-energy is 

distributed in equal radial increments to infinity, moving its center back and 
forth may require moving only infinitesimal amounts of shrinkage. 

There could be a continuous interchange of spherical shrinkage between a drifting
particle's geometric displacement patterns and those of all other phenomena in 
the universe.  This interchange could result from local changes in the integrated 



IPP � Quantum Effects Explained  1 - 11

amounts of rhombic distortion & ECE ellipticities, as these universal 
mass/charge fields interact dynamically with the moving defect's mass/charge 

field.  And the effect of these changes in lattice distortion could be to cause a 

defect's center of geometric shrinkage to move with the defect, while an equal 

amount of universal geometric shrinkage moves at precisely the same rate in 
precisely the opposite direction.  If we accept these arguments, we perceive that 

spherical shrinkage may never change its distribution in space.  Only hemi-
spherical shrinkage moves, but, even here, its movement is precisely offset by an 

equal and opposite movement of its split counterpart.  These inherent offsetting 

effects of moving centers of shrinkage explain, rather neatly, why angular 
momentum is conserved. 

Why Defects And Hovering Oscillators Are Locked Together 

A defect creates a charge imbalance in the lattice that couples from ECE to ECE to 
create a charge field, which stretches toward infinity.  This charge field tends to repel an 

LD oscillator when its center is displaced from the charge-field center but, the 
oscillator also tends to rotate ECEs at its center during its maximum central density 

phase, and this is the action required to displace the defect to an adjacent site in the 
lattice.  Therefore, the repelling action is negated by the tendency of the oscillator to 
rotate the defect to the opposite side of its center, thereby reversing the direction of its 
field's repulsion.  The result is negative feedback locking defect and oscillator together, 
leading to a stable back-and-forth motion at half the LD oscillator's frequency. 

IPP's Concept For Particle Motion - Ellipsoidal Hovering 

Because a defect's hovering lattice-density oscillation pulsates in-and-out, it is affected 

by radial lattice "stiffness" irregularities in the defect's vicinity (IPP's idea of ).  
This interaction alters the oscillator's ellipticity, thereby altering its rate of drift through 
the space lattice.    This change in drift inevitably alters the rate at which the defect 
progresses through space, since a defect must continually hover between the two defect 
sites closest to the hovering oscillator's center.  It will be worth our while to dig deeply 
into these matters, because our investigation will unveil the nature of spin, forces, 
accelerations, momentum, and de Broglie matter waves.  We begin by looking into the 
dynamics of an idealized lattice-density oscillator: 

An Idealized Lattice-Density Oscillator 

Some Primary Considerations 

In any lattice of mass points coupled by suitable restoring forces, there will be a 
characteristic speed of propagation for mechanical displacement signals.  In the space 
lattice, this speed of propagation is determined by the "inertia" of ECEs in relation to the 
strengths of their mutual attractions and repulsions.  This speed of propagation, despite 
Einstein's assertion, must be several times the speed of light, as I have argued in the 
preceding photon discussion. 
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Following the usual custom in analyzing an oscillation, we shall defer explaining its 
origin, and merely assume that a lattice-density oscillator exists.  Our immediate goal is 
to describe its structure. 

The Structure Of A Lattice-Density Oscillator's Center 

Let us assume that somewhere in the space lattice a point-centered zone of shrinkage 
has caused two central opposite-polarity ECEs to rotate around their mutual center 
until their rotation has been brought to a halt by the accumulated repulsion of like-
polarity ECEs in this more condensed environment.  At this moment, the central 
shrinkage is at a maximum, with all local motion arrested, and with all local mass-
energy in the form of torsional stress.  What immediately follows, of course, is that this 
accumulated repulsion acts on these fully "wound-up" ECEs to cause them to unwind 
toward a local condition of an undistorted lattice, at which point, the two opposite-
polarity ECEs are rotating at a maximum angular speed, the central mass-energy of the 
oscillator is in the form of rotational, or angular, "momentum"*, and the central 
shrinkage is zero. 

* I use quote marks because ECE "momentum" implies ECE "inertia", which is another unexplained postulate 

of the Theory.  You will also perceive that every part of the oscillator�s structure governs every other part.  

Assigning a dominant role to the oscillator's center is purely a pedagogical device to aid comprehension. 

Where did the central shrinkage go during this conversion to ECE "momentum"?  Since 
shrinkage is conserved, it clearly must have moved outwardly, probably in a spherical 
front.  Yet, we see that the shrinkage must return again to the center, because the 
angular "momentum" of the two central opposite-polarity ECEs will cause them to "wind 
up" in the opposite direction.  Having postulated that ECE interactions are lossless, we 
can be assured that this opposite rotation will halt at the same angle of rotation as the 
previous rotation, producing the identical amount of central shrinkage.  However, 
although the shrinkage is identical, the pattern of ECE displacements is not!  It is, 

instead, a mirror-image pattern with all the ECE polarities reversed.  I have italicized this 
notion of pattern and ECE polarity reversals, because it is essential in explaining the 
hovering motion of defects, spin, polarization, charge-exchanges, and many other 
things. 

What Happens In The Space Surrounding The Oscillator Center? 

As the two central ECEs rotate back and forth, this movement couples to their 
immediate ECE neighbors, and through these to surrounding ECEs, etc. toward infinity.  
However, because of the postulated ECE "inertia", the mechanical inertia of each 
spherical shell increases as the square of its radius, so that the coupling of outward 
displacements from one spherical shell to the next is progressively delayed, causing two 
things to happen: 

1) ECEs of each inner shell "overshoot" those of the next outer shell  that is, they 
rotate further around than they would if the coupling between shells were 
instantaneous. 

2) These "overshoots" introduce torsional stresses in each successive spherical 
shell of the oscillator, causing each to store, momentarily, a portion of the 
shrinkage emanating from the oscillator center.  These overshoots, in turn, 
cause each shell to become an additional signal source radiating signals both 
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outwardly and inwardly as they unwind.  This manner of energy storage and re-
emission, shell by shell, has several profound consequences.  The first is: 

An Oscillator Frequency Is Proportional To Its Shrinkage 

This argument is complex, but is easy to follow: 

1) The angular rotation of the oscillator center is proportional to central shrinkage. 

2) The central torsional stress is proportional to the angle of rotation. 

3) The rate of change of central rotation (the signal) is proportional to the torsional 
stress. 

4) The percent of signal overshoot, shell by shell, is proportional to the rate of 
change of the signal, shell by shell. 

5) The fraction of shrinkage stored, shell by shell, is proportional to the percent of 
signal overshoot, shell by shell. 

6) The number of shells required to store the central shrinkage is inversely 
proportional to the fraction of shrinkage stored/shell. 

7) The frequency of the oscillator is inversely proportional to the number of shells 
required to store and return the central shrinkage, and therefore is proportional 
to the central shrinkage. 

8) Hence, here is a rationale for Einstein's insight into the nature of a photon, 
whereby E = hf, although, of course, a photon is a moving lattice-density 
oscillator, not a static one. 

In-Out Signal Velocities Vary With Radius 

We have surmised that "overshoots" cause each spherical shell of the oscillator to store 
shrinkage, and return a portion of this stored shrinkage back toward the oscillator 
center. These return signals, however, travel faster than the outgoing signals, because 

the "inertia" of each shell decreases inwardly.  We can infer that inward and outward 
propagation speeds will differ dramatically near the oscillator center, because of 
substantial differences between inward and outward "inertia", but these speeds will be 
very nearly equal remote from the center, because the two "inertias� are very nearly 
equal.  However, the round-trip time from the oscillator center to any shell will be 
strictly proportional to its radial distance, because the slower propagation times of 
outgoing ECE-density signals close-in will be compensated by the faster return times. 

An LD Oscillator Develops Signal Nodes 

The fact that a lattice-density oscillator develops both outwardly and inwardly moving 
signals in each spherical shell leads to differing phase relationships of these opposing 
lattice-density signals.  At some radial distances, they will be out-of-phase, and will 
cancel; at other distances, they will be in-phase, and add.  These nodes will, of course, 
shift in and out in synchronism with the central lattice-density oscillations, so we 
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should visualize the oscillator density patterns as an endless series of concentric 
spherical shells, each supporting a lattice-density "wave", which moves back and forth 
within this narrow zone.  These waves change their electric polarization on successive 
oscillator cycles, as I explain next:  

An LD Oscillator Produces An Alternating Charge Field 

You will perceive that the two central opposite-polarity ECEs reverse their directions of 
rotation at each central ECE-density maximum.  Since these rotating ECEs influence 
surrounding ECEs by repelling ECEs of like polarity in their vicinity, these central 
repulsions will propagate outwardly in inverse-square fashion, in synchronism with the 
density wave.  This influence will naturally be strongest along the line connecting the 
two rotating ECEs, and will diminish to zero in all direction through the oscillator 
center perpendicular to this line, where the opposite-polarity influences cancel.  Since 
these repulsions vary with the central angle of rotation, the resulting outward wave of 
ECE displacements will have a sinusoidal character, which reverses polarity each time 
the two central ECEs pass through the zero shrinkage (and maximum angular "momen-
tum") phase of the oscillator cycle. 

Thus, a lattice-density oscillator generates an alternating charge field, whose frequency 

is half its own frequency, whose amplitude is proportion to the oscillator frequency (or 
energy), and whose maximum amplitudes tend to lie in one of the six face-diagonal 
planes of the space lattice.  We should notice, also, that the two hemispheres of this 
alternating electric field have opposite instantaneous polarities in opposing radial 
directions at the same radial distances from the oscillator center. 

Why An Oscillator's Polarization Maintains A Constant Direction 

If central ECE rotations must always take face-diagonal directions, how do they 
maintain a fixed direction in space during the changing ambient conditions that a 
drifting oscillator encounters?  What happens when the oscillator center encounters 
local lattice asymmetries, transient proximity of charged particles, or periodic angular 
shifts in the cardinal axes of the space lattice resulting from passing through successive 
grain boundaries?  The answer: the oscillator's stability of polarization depends upon its 

huge size, and the fact that all of its parts are in intimate feedback relationships.  When 
grain-boundary transits cause shifts in cardinal lattice directions, the outer parts of the 
oscillator's distortion pattern force the central rotations to spread over several lattice 
cubes, with multiple diagonal-plane orientations, so that their integrated motion has 
essentially the same direction of rotation.  Directional changes in oscillator polarization 

can occur, but these require persistent influences.  Most transient interactions involve 
successive influences which are equal and opposite, and integrate to no net effect. 

So we see that a lattice-density oscillator has homeostasis, as it generates its very 
complex pattern of dynamic displacements in the surrounding space.  Will these 
complex oscillator attributes have observable effects?  To explore this question, we will 
need to move our idealized lattice-density oscillator into the real world. 
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The Lattice-Density Oscillator In The Real World 

The Effects Of Local Lattice Asymmetry (Forces) 

In the real world, the space surrounding a lattice-density oscillator is not pristine, but 
is, rather, a summation pattern of all the inverse-square-attenuated dynamic distortion 
patterns of all the communicating matter and energy in the universe.  With very few 
exceptions, this summation pattern will exhibit asymmetry relative to an LD oscillator 
center.  Although this asymmetry is always dynamic, it will usually exhibit two kinds of 
"static" biases: 

1) A charge-field bias:  The charge field is manifest as time-averaged, oppositely-
directed torsional displacements of plus ECEs and minus ECEs from their 
"normal" equilibrium locations (i.e. the locations opposite-polarity ECEs would 
assume in an undistorted cubic lattice).  This charge field is easiest to visualize 
as an abstraction.  Let us imagine, for example, that we have stopped an 
electron from hovering, and placed it four lattice units above a 4x4x4 section of 
the space lattice.  Under these idealized conditions, in Fig. 1-2, below, we see 
face-diagonal lines of +ECEs raised slightly above their "normal" locations, and 
face-diagonal lines of -ECEs slightly below their normal locations:

Fig. 1-2 An Electron's Charge Field 

These displacements will increase gradually in the direction of the field-
producing defect, and decrease gradually in the opposite direction.  These 
changes in the magnitude of the displacements are the charge field gradient.  Its 
field vector would point in the direction of the most rapid increase in these 
displacements, and will have a magnitude proportional to the rate-of-change 
with distance of these displacement magnitudes.   

2) A mass-energy-field bias (gravity): Gravity is manifest as an infinitesimal 
ellipsoidal distortion in the time-averaged shape of ECEs.  These shape changes 
are a consequence of a pattern of variations in local ECE densities which result 
from the vector summation, moment-by-moment, of all the dynamic lattice 
distortion patterns passing through each lattice location.    Since these lattice-
perturbing patterns are typically large relative to the size of a lattice "cube", the 
time-averaged ellipticity of ECEs will vary systematically from place to place.  
These variations constitute a gravitational field.  The strength of the 
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gravitational field at any point in space is proportional to the rate-of-change with 
distance of these ECE ellipticities, while its vector points in the direction in 
which the ECE ellipticities are increasing most rapidly. 

We can think of these time-averaged ECE shape-changes as elongating each 
ECE in one direction, while contracting it in all orthogonal directions.  I show 
the lattice distortion produced by a hypothetical point-centered neutral particle 
just one lattice unit above this 4x4x4 section of the space lattice in Fig. 1-3, 
below. 

Fig. 1-3 Gravitational Field (Greatly Exaggerated) 

You will perceive, above, that the source shrinking the lattice must be extremely 
close-by, and its magnitude of influence must be extremely exaggerated, for 
these differences to be noticeable.  The reason for this imperceptibility is that 
longitudinal elongations and orthogonal contraction of ECEs do not lead to 
torsional displacements, so they must work against the extreme cardinal rigidity 
of the space lattice, i.e. the rigidity of the ECEs, themselves.  This is our 
dominant clue to the extreme weakness of a gravitational field compared to a 
charge field. 

To perceive the effects of a gravitational field, we will need to explore how these 
exceedingly minute ECE time-averaged shape-changes alter the lattice "stiffness" 
in various radial directions to the in-and-out lattice-density waves of a hovering 
oscillator.  We shall develop this understanding in the next few pages.

A Few More Details About IPP's Force Fields 

IPP needs explanations for only four force fields  charge, mass-energy (gravity), 
magnetic, and strong-force.  The so-called weak-force plays no part in IPP, which offers 
other explanations for particle creations, interactions, and decays.  We shall deal, here, 
only with the charge & mass-energy fields, because the magnetic & strong-force fields 
require prior understanding of defect-pairs. 

It is important to perceive all IPP's force fields as integrated biases of lattice distortion 
patterns, because these fields are, themselves, dynamic, and are all buried as sub-
components in a composite dynamic distortion pattern of infinite complexity.  You will 
perceive that this is true, since every point in the infinite space lattice is the recipient of 
inverse-square attenuated dynamic distortion patterns from every communicating bit of 
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matter and energy in the universe.  So when I describe the structure of a particular force 

field, you will understand that this structure is its affective pattern, rather than its 
actual shape. 

We will need one other important insight to understand how these diffuse and ever-

changing force fields interact with a defect's hovering LD oscillator.  It is this: The in-

and-out pulsating characteristic of a hovering oscillator's point-centered lattice density 

waves permits them to sample the lattice irregularities, or asymmetries, of a substantial 

volume of the surrounding space.  These asymmetries produce varying lattice 
"stiffnesses" in different radial directions to the out-going lattice-density waves, which 
result in varying return times & energies from different radial directions for the reflected 
waves converging on the oscillator's center.  The net result is to alter the oscillator's 
ellipticity, which can change both the rate and directions of the drift of the oscillator's 
center, along with its hovering defect.  Although each of the four force fields alters the 
lattice stiffness in a different manner, the hovering oscillator is oblivious to these 
differences.  It simply responds to the integrated effect of all four force fields as a 
superimposed mixture.  There will, of course, be one other significant effect of this 
scenario  the fields, themselves, will be altered by this interaction.  I will explain this 
as we proceed. 

We Pause To Develop A Mental Image Of An LD Oscillator Field 

Let us think of the changing ECE patterns developed by an LD oscillator in terms of 

concentric shells of plus ECEs and minus ECEs.  Viewed from any point in empty
space, these opposite-polarity concentric shells would alternate with equal spacings to 

infinity.  Now imagine this same point as the center of an LD oscillation.  The concentric 
charge shells will be subject to these changes: 

1) Their average diameters will contract inverse to the square of their radial 
distances, and by an amount proportional to the primordial shrinkage captured 
by the LD oscillator. 

2) Each shell will be expanding and contracting in synchronism with the central 
oscillator rotational frequency, appropriate to its radial and phase distance from 
the oscillator center. 

3) The centers of these charge shells will oscillate sinusoidally back and forth in 
some arbitrary direction through the oscillator center, at half the LD oscillator 
frequency, with an amplitude proportional to the oscillator's energy.  The centers 
of opposite-polarity shells will move always in opposite radial directions, with 
their shell movements scaled inverse to the square of their radial distances, and 
timed appropriate to their phase distance from the oscillator center.  These back 
and forth shifts, of course, determine the direction and the amplitude of the 
oscillator's alternating charge field.   

How An External Charge Field Affects An L-D Oscillator 

In order to understand the effect of an external charge field on an LD oscillator, we will 
ignore all the external field's hovering complexities, and consider, rather, its "static", or 

integrated charge-displacement pattern.  We can visualize this field as successive spher-
ical shells of ECEs, either expanded, or contracted, depending upon their polarity.  Let 
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us now imagine that we are so far from external defects producing this charge field, that 
these consecutive shells are indistinguishable from parallel planes.  We now need a 
slightly different mental image.  Let's consider that the charge field is manifest as a 

continuum of pre-rotated ECE dipoles, each of which tilts its attracted end toward the 
remote defect, thereby generating a torsional stress in lattice. 

These dipole rotational stress biases cause the amount of overshoot at various radial 
directions and distances to differ on alternate cycles (opposite-polarity cycles) of the LD 
oscillator, because the lattice is "stiffer" for one direction of dipole rotation (in the pre-
rotated direction) compared to the other.  These overshoots will exhibit their maximum 
differences when the oscillator's alternating-field vector lines up with the charge field 
vector; opposite-polarity cycles will exhibit minimum differences when the two vectors 
are orthogonal.  And, regardless of the angle between the oscillator alternating-field 

vector and the charge field vector, the overshoot differences will vary in different radial 
directions from the oscillator center, being a maximum in the oscillator's alternating-
charge-field direction, and zero in orthogonal directions. 

What effects will these overshoot differences have on the lattice-density oscillator?  
There are three dominant effects: 

1) The reflected signals returning to the oscillator center will no longer be in sync 

from all radial directions; those returning from the direction of the charge field 
vector, or opposite to this direction, will arrive sooner than orthogonal signals 
during one LD oscillator cycle, and will arrive later during the succeeding cycle.  
These timing differences will tend to shift the direction of the oscillator central 

+ECE/-ECE dipole rotations on alternate cycles, first with the charge field, next 

orthogonal to the field.  But, because of ECE "inertia", what will happen is that 
the direction of rotation will tend to shift midway between these two extremes. 

2) A second effect is more subtle, and results from the charge field gradient.  

Oscillator signals will return both faster and slower from the direction of the 
charge field gradient, than from the direction opposite to this gradient.  Since 
the faster returning signals have more influence on the oscillator center than the 
slower signals, the result of this signal timing difference will be to shift the 

oscillator center continually in a direction opposite to the charge field gradient. 

3) The third effect is for a charge field to increase the oscillator frequency.  Since 
the oscillator return signals orthogonal to the charge field tend to be unaffected 
by the field, and whereas the signals in the field direction are both speeded up 
and slowed down, we see that the speed of the central rotations will be governed 
by the orthogonal signals during the slow return part of the field-direction 
signals, but will be governed by the field-direction signals during the fast-return 
part of the cycle.  The result is a central rotation frequency which is intermediate 
between the unaffected value and the fast-return value. 

Why The Interaction Produces Hemispherical Shrinkage 

Thus, we see that a spherically symmetric lattice-density oscillator, if suddenly 
immersed (this is hypothetical, of course) in a charge field, will steal mass-energy 
(shrinkage) from the field, increasing the oscillator energy, i.e. its frequency.  These 
changes in the oscillator's structure will start a lattice-density wave of changes in the 
charge field which will ultimately result in changing the ellipticities of all the hovering 
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oscillators of all the particles whose patterns contribute to the field.  The ellipticity of 
these field-producing oscillators will be altered so as to produce an infinitesimal change 
in their momentum, whose integrated value is precisely equal and opposite to our 
oscillator's momentum change.  It is the opposite motion of these two effects which 
permits us to interpret the interaction of an oscillator with an ambient charge field as 

stealing a component of the field's spherical shrinkage, which instantly splits into two 
oppositely-directed hemispherical components. 

Of course, once an LD oscillator finds itself in a charge field, it tends to move its center 

opposite to the field's gradient, thereby gradually losing its stolen energy back to the 
field. 

How A Gravitational Field Affects An L-D Oscillator 

Since shrinkage affects both polarities of ECEs equally, it will produce no torsional 

displacement effects, as we see manifest in the charge field of Fig. 1-2.  Thus, opposite-

polarity signals moving out from the oscillator center will exhibit equal delays in their 
return signals from any radial direction.  There will, of course, be minute differences in 

the return times of both polarity signals compared to a field-free region of the space 
lattice, because shrinkage implies a higher local density of ECEs.  A shrunk lattice will 
be stiffer toward torsional displacements than "empty" space, producing more over-
shoot, and, hence, quicker return times.  We can see, therefore, that one result of a 
gravitational field will be to increase the frequency of any LD oscillator suddenly 
immersed in it.  There is experimental evidence for this changing oscillator frequency 
with variations of gravitational field intensity in the Mössbauer Effect, and in gravita-
tional redshift, for light emerging from massive stellar bodies. 

But why does a gravitational field gradient attract an LD oscillator, rather than 
repel it (the experimental evidence being the bending of light rays in the direction of 
higher gravitational field intensity)?  To find out, we must discover just how the over-
shoots vary for LD oscillator signals moving in-and-out at different angles relative to the 
longitudinal stretch and orthogonal compression of a gravitational field.  A way to get an 
intellectual toehold on this problem is to think of the gravitational field as a multiplicity 
of ECE dipoles, whose dipole moments vary in different directions relative to the 
gravitational field vector, because both the center-to-center spacings between opposite-
polarity ECEs, and the spacings between like-polarity ECEs, vary in these different 
directions. 

Let us assume, for the sake of simplicity, that the lattice surrounding the oscillator 
center consists of concentric shells of opposite-polarity ECE dipoles, all oriented so as to 

be normal to the shell's radius.  Now, if we imagine the oscillator to be immersed in a 
gravitational field, here is the situation:  Looking in the field direction, we see dipoles 
with shorter center-to-center spacings, but with increasing spacings between shells (see 
Fig. 1-3).  Looking normal to the field, we see these two attributes reversed.  Thus, in 
the field direction, we find dipoles with a shorter lever arm (more force required to 
rotate), but with weaker ambient repulsion (less hindrance to rotation); in the direction 
normal to the field, everything is reversed.  The result: a stand-off  we conclude that 
the dynamic stiffness in either direction is almost identical.  Here is another reason for 
the extreme weakness of the gravitational force. 

The fact that there is a gravitational force tells us that there is some very slight 
inequality between the two dipole rotating situations.  Wouldn't we expect the 
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postulated "external pressure" to make it somewhat easier to elongate ECEs toward a 
center of radial shrinkage, than to shorten their center-to-center spacings through 
circumferential compression?  Wouldn't this disparity slightly ease the stiffness to 
dipole rotation in the field direction, so that overshoots at the same radial distance from 
the oscillator center would be infinitesimally less, than orthogonal to it? 

Hence, since lattice-density signals encounter the easiest dipole rotation (least 
"stiffness") in the increasing ECE stretch direction, they will return latest from this 
direction.  And, of course, this timing disparity will cause the oscillator center to move 
in the direction of the gravitational gradient.  Here is the explanation for Einstein's 
prediction of light deflection by our sun, and for the subsequent astronomical discovery 
of a gravitational lens effect, when light from a very distant galaxy is presumed to be 
bent inwardly as it grazes both sides of an intermediate galaxy. 

How A Hovering Oscillator Responds To An Electrostatic Field 

We notice, first, that the presence of a replacement defect at the hovering oscillator's 
center creates a spherically symmetrical charge field of much greater strength than any 
possible ambient field due to external charged particles.  Thus, to determine how an 

external field changes the direction and speed of drift of a hovering oscillator, we need to 

perceive that the bound hovering oscillator responds to the algebraic sum of its internal 
hovering defect's field and its external fields.  We know that a hovering oscillator 

accelerates toward a field whose polarity is opposite to its internal field, and away from 
one of the same polarity.  The reason for this difference is obviously that the direction of 
least dynamic lattice "stiffness" reverses in these two cases. 

Why Oscillator Ellipticity Changes In A Force Field 

When we examine (in our mind's eye) the returning radial components of the reflected 
outgoing lattice-density wave of an asymmetrical oscillator immersed in a field, we can 
infer that those components returning from stiffer radial directions will arrive both 
faster, and with larger amplitude (because they suffered less inverse-square attenuation 
before reflection).  Thus, not only will the oscillator center shift in the direction opposite 
to the region of maximum stiffness, and cause the frequency of the oscillator to 
increase, but the central ECEs will incur a shift as a group in this same direction, 
because of the radial variation in signal intensity.  In turn, this central ECE group 
displacement, by setting up differential lattice stresses at the oscillator center, will 
provide more impetus for outgoing lattice-density waves in the direction of greatest 
lattice stiffness. 

Thus, faster returning waves are reflected at the oscillator center with larger relative 
amplitudes than slower waves from other radial directions, and these larger amplitude 
outgoing waves suffer even quicker reflections if the field gradient increases*, thereby 
causing the oscillator ellipticity and the amount of central displacement to build, cycle 
by cycle. 

* Accelerating in the direction of a charge field gradient is possible only for a hovering LD oscillator whose 

defect core has a charge opposite to that of the defects creating the charge field.  The above process would 

work as described for a gravitational field. 
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Why LD Oscillator Ellipticity Is Self-Perpetuating 

This analysis permits us to see how force fields create accelerations; now let us explore 
how an ellipsoidal LD oscillator behaves in a field free region of space.  We should see 
that the only effect of removing an ellipsoidal LD oscillator from an ambient charge-field 

gradient is to prevent changes in the amplitudes of the signals returning from various 
radial directions.  But, if the outgoing signals vary in amplitude radially, due to 
oscillator ellipticity, they will create differing amounts of overshoots at the same radial 
distances; hence, stronger signals will return quicker with larger amplitudes.  Thus, the 
central stress asymmetry of an ellipsoidal LD oscillator will be rejuvenated each cycle, 
with the result that the oscillator center will shift in the same direction, and by the 
same amount, as in the previous cycle.  These cycles will repeat forever, so long as the 
oscillator's trajectory takes it through field-free space*.  Here is the fundamental 
explanation of an oscillator's continued drift through empty space. 

* Of course, the largest dimension that field-free space could have, strictly speaking, is a point.  Also, if we 

accept the argument that the center of universal shrinkage remains fixed, we see that a continuous exchange 

of a particle's geometric shrinkage with field shrinkage must continue during its drift through "empty" space. 

Why Maximum Drift Speed Is Asymptotic To The Speed Of Light 

Here is why a particle's drift speed through space can get arbitrarily close to the speed 
of light, but can never equal it: 

Drift speed is proportional to hovering oscillator ellipticity. 

This ellipticity increases as the hemispherical shrinkage component of the 

hovering oscillator (its drift component of shrinkage, �� ) increases relative to its 

spherical component (its mass component of shrinkage, �� ). 

It is obvious, however, that this hemispherical shrinkage component can never 
equal 100% of the hovering oscillator's shrinkage; hence the hovering oscillator's 
ellipticity can never increase beyond that produced by 100% hemispherical 
shrinkage, which, you will recall, is the ellipticity of IPP's photon, whose center 
drifts (steps) at the speed of light, c. 

Thus, a particle's drift speed, v, should be:  

Equation 1  
��

�

��

��
�

From this relationship, you will see that the velocity, v, approaches zero, as ��

approaches zero, and approaches light speed, c, as ��  approaches infinity. 

The hovering of a charged defect between two adjacent lattice sites is IPP's notion of 
spin.  We consider this next: 
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How To Visualize The Mechanics Of An Electron's Spin 

We must begin by describing an electron's defect structure.  An electron is a 

replacement defect, which we can picture as an out-of-place -ECE, i.e. the wrong-polarity
of ECE anywhere in an otherwise perfect cubic lattice.  Because it is out-of-place, this -

ECE will repel the six -ECEs in cardinal directions, and attract the twelve  +ECE in 
face-diagonal directions, thereby forming a charge-displacement pattern, whose center 
would look like the upper 3-D pair of Fig. 1-4.  However, as I have explained earlier, we 
must visualize this pattern as "hovering" between face-diagonally adjacent lattice 
locations, as I have drawn in the lower 3-D pair.  Please use the enclosed 3-D plastic 
viewer for these (and other) 3-D drawings: 

Fig. 1-4 The Charge-Displacement Pattern Of An Electron 

Basic Pattern 

"Hovering" Electron's Charge-Displacement Pattern

How Much Of The Surrounding Lattice Rotates In Spin? 

From IPP's perspective, any local action ultimately affects all the ECEs of the universe; 
therefore, the above description of an electron's spin is only the central action of an 
infinite-extending lattice-density oscillation.  This rotation obviously couples to 
surrounding ECEs in a manner which induces inverse-square diminishing waves of 
orbiting torsional rotations in the in-and-out lattice-density waves, which mimic, in 
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attenuated fashion, the orbiting of the electron's central -1e charge.  The radial distance 
they can move outwardly before oscillator reversal is inversely proportional to the 
hovering frequency; hence the radial size of the spin pattern also scales inversely with 
the oscillator frequency. 

Now, considering that the mass-energy of any point-centered phenomenon is distributed 
in equal radial increments to infinity, we can infer that the portion of the electron's 
mass-energy which must be rotated scales inversely with the hovering oscillator's 
frequency.  Hence, the electron's spin, being a measure of hovering action, should be 
constant for all (non-relativistic) drift speeds. 

What Sets The Frequency Of Spin?  An Admission Of Ignorance! 

The concept of "hovering" seems so essential to an understanding of defect movement, 
and seems so satisfying an explanation of why an electron can respond to microvolt/cm 
gradients, that I was mortified to discover a series of apparently irresolvable paradoxes 
when I attempted to answer the above question.  We can reveal these by asking several 
pertinent questions: 

1) What hovering frequency would be required to cause an electron to drift at a 
speed of 0.9c?  Answer: if we assume that an electron can move only one lattice 
face-diagonal per cycle of the hovering oscillator, the hovering frequency would 
need to be numerically equal to the number of lattice units that light moves in 
0.9 second, or: 
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The obstacle, here, is that this frequency requires the hovering oscillator to have 
an energy of:  
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This energy is about 11000 times the electron's self-energy, 0.511 MeV, instead 

of 2.3 times its rest mass, �� , as relativity predicts, and experiment confirms:   
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2) What scheme might remove this absurd oscillator energy requirement?  Perhaps 
a defect could change its location by hundreds or thousands of lattice units 
during a single oscillator cycle, by a mode wherein parallel chains of opposite-
polarity ECEs move one lattice face-diagonal in opposite directions, with the 
necessary rotation occurring only at both ends.  I show an abbreviated example 
of this motion in Fig. 1-5, below: 
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Fig. 1-5 Opposite-Chain Mode Of Electron Translocation 

The three diagrams, above, show views before, during, and after electron translation of 
a section of the lattice in a 1,0,1 direction (i.e. a face-diagonal plane).  I have assumed, 
for simplicity of drawing, that the electron is moving to the right, parallel to this face-
diagonal direction, but the scheme would apply to any direction of movement, if we 
imagine the motion to be a sequence of synchronized oppositely-directed zigzags 
through the lattice.  One possible argument in favor of this extended mode of defect 
translation is that it will be found necessary to explain the near-light speed of very low 
mass neutrinos, for which the hovering oscillator frequency will clearly need to be many 
orders of magnitude slower than an electron's.  This parallel chain mode of defect 
translation is also essential for explaining the phenomenon of "charge-exchanges" in 
particle decays, and charge-exchanges effecting successive altered charge-distribution 
states of defect-pair clusters (IPP's concept of hadron particles). 

This chain-of-ECEs mode of electron defect translation may seem, at first thought, to be 

ruled out by its apparent indefinite spin action.  However, if we accept that the mass-
energy of the hovering oscillator is distributed in equal radial increments to infinity, we 

should see that spin is certain to involve huge numbers of ECEs.  Therefore, variations 
in the numbers of central ECEs initiating this volume effect may not be significant, 

because no central ECE moves more than one lattice face-diagonal, regardless of how 
many ECEs are in the moving columns. 

Further reflection will undoubtedly permit someone to find a creative solution to this 
enigma.  Until then, it is prudent to drop this question of hovering frequency, and move 
on to other matters. 
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Why An Electron Appears To Be A Zero Dimension Point 

It puts a theorist in a bad light to argue that an electron has an infinite size, when 

scattering experiments show its size as ����
��  However, what these experiments 

measure is the apparent size of an electron's center of charge, and this does not conflict 
with IPP's concept, because IPP's center of charge (at low drift speeds) has zero 

dimension, being at the center of an orbiting charge. 

Why The Spin Vector Aligns With, Or Opposite To, Drift Direction 

This baffling assertion of Quantum Mechanics is easily understood from IPP's 
perspective.  Here are the necessary concepts: 

The rotational direction of spin is arbitrary, but tends to be perpetuated because 
of ECE inertia. 

The plane of spin rotation is constantly shifting, as the hovering oscillator drifts 
through the lattice.  Whenever the oscillator center approaches closer to a new 
defect site than to one of two previous sites, the direction of the defect's 
translocation will suddenly shift, so that it is now between the new site and the 
closest old site.  The angle of shift is typically 60 degrees, though 90°, even 120° 
will sometimes occur.  The direction of rotation will be preserved. 

For any arbitrary trajectory of the hovering oscillator through the space lattice, 

these changes in hovering direction will be systematic, and such that their spin 
vectors integrate to a direction aligned with the direction of drift.  This is easily 
seen in the 3-D representation, below, which shows the changes in the spin 
vector's direction resulting from an oblique trajectory through the lattice: 

Fig. 1-6 Why Integrated Spin Vector Aligns With Drift Direction 

The Origin Of The de Broglie Matter-Wave 

The (absolute) de Broglie matter-wave is simply the lattice-density wave associated with 
the hemispherical shrinkage (the drift) component of a particle's hovering oscillator.  
The de Broglie matter-wave is implicit in the ellipsoidal shape of a drifting hovering 
oscillator, which can be considered to be a summation of a spherical oscillator with a 
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"captured" ellipsoidal photon.  Hence, it is manifest as a low-frequency lattice density 
modulation of the hovering oscillator's frequency.  If we consider this ellipsoidal 

hovering oscillator as having a fixed spherical "mass" component of shrinkage, �� , and 

a variable hemispherical "drift" component of shrinkage, �� , we see that the hovering 

component of energy is unchanging, and proportional to the particle's mass, while the 

drift component can take any value.  The ratio of drift shrinkage to hovering shrinkage 
(i.e. the oscillator's ellipticity) determines the increment of the oscillator step distance 
(wavelength), and the frequency of the oscillator determines how many shifts occur each 

second.  Since an oscillator's wavelength is inverse to its frequency, we perceive that an 

LD oscillator's drift velocity, v, through space is determined solely by its ellipticity: 

Hence:  
�

�

�
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�

And, if ��  is the particle's mass, the momentum of a non-relativistic particle (where 

�� �� ) is clearly proportional to the drift component of its hovering LD oscillator: 
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Therefore, we see why the de Broglie matter-wave is proportional to a particle's 

momentum. It is simply because: ����

I don't know how to incorporate Planck's constant into this proportionality to produce 
de Broglie's relationship, because I have been unable to discover the actual value for the 
electron's hovering frequency in my analysis of the electron's spin.  The impediment is 
in trying to ascertain what fraction of the particle's infinitely extended mass has to be 
moved back and forth during the hovering cycle.  Perhaps some of you will see how to 
do this.  Incidentally, you will, of course, perceive that the hovering frequency is also 
present as a lattice-density wave; however, its frequency is much too high to be detected 
by diffraction effects. 

IPP's Concepts For Particles: Lattice Defects 

An Apparent Difficulty 

Question: How can an ether theory find defect structures for hundreds of particles, 
when a moment's reflection convinces us there can be only three basic types of single 
lattice defects?  These are: 

void defect  created by a missing ±ECE. 

excess defect  ±ECE wedged somewhere in the lattice. 

replacement defect  wrong polarity ECE in a lattice site. 
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Answer:  These three types of defects are adequate for the electron and muon families of 

leptons, as I explain below.  All the other particles, including the tau quasi-lepton*, are 

comprised of clusters of collapsed-void defect-pairs, whose clusters vary in numbers of 

defect-pairs from pions = 1, to upsilons = 16.  Defect-pairs are formed when pairs of 
voids find themselves in a cardinal alignment in a region of "condensed" space (i.e. at 
the center of a strong lattice-density oscillation).  In this situation, a void collapses into 
a lattice structure which has orthogonal zones of contraction & expansion.  Pairs of 
collapsed voids, whose zones of expansion/contraction have opposite orientation can, 
therefore, join together in a stable structure through mutual cancellation of each other's 
distortion. 

* The primary reason for suspecting that a tau lepton is a meson resonance is that about 64% of its decay 

modes yield lighter mesons.  I give its defect-pair structure & mass calculation in my 2nd chapter. 

Since voids collapse only in cardinal lattice planes, defect-pairs have quantized
spacings.  Because these spacings vary according to cluster geometry, I have been able 
to find a way to calculate defect-pair masses vs. defect-spacing, which has permitted 
finding plausible structure for numerous hadron resonances, and validating these by 
mass calculations vs. experimental values.  These compare often within ±0.01%.  
Defect-pairs also yield a calculable concept for strong force bonds, because each defect-
pair has residual zones of expansion/contraction distortion which can be partially 
canceled by a neighboring defect-pair of suitable orientation. 

Assigning Defect-Types To Various Particles 

1) ±±* replacement defects = electrons/positrons: a replacement defect is a 
dynamic lattice distortion pattern resulting from removing an ECE of either 
polarity from any location in the space lattice, and replacing it with an ECE of 
opposite polarity.  Since both the removal and the replacement results in a 1/2e 

charge of the same polarity, a replacement defect generates a charge-dis-
placement pattern with a charge effect of ±e (See Fig. 1-2).  Charge-displacement 
patterns are only one component of a particle's complex dynamic distortion 
pattern; other components are hovering (spin), shrinkage (gravity), and ellipticity 
(drift). 

* This charge prefix shows the number of ECE "charges" each defect manifests. These double charges 

indicate that replacement defects have twice the charge of ECEs. 

Why replacement defects are electrons/positrons:

This is the only defect structure that permits assigning ECEs half an 
electron's charge, a vital necessity for this theory. 

The replacement defect's mode of production, (i.e. removal of an ECE, 
followed by replacement with an opposite polarity ECE), is consistent 
with the phenomenon of electron/positron pair production.  This creation 

event is easily understood as a rotation of adjacent opposite-polarity ECEs 

into each other's sites.

The fact that a replacement defect hovers permits us to understand its 

wave-particle duality, since it is both point-centered and a lattice-
density oscillation. 
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2) ± void defects = muon neutrinos: a dynamic lattice distortion pattern resulting 
from a missing ECE anywhere in the space lattice. Voids have a charge of ±1/2e.  

Our theory identifies -voids as muon antineutrinos, and +voids as muon neutrinos.

Why voids are muon neutrinos:

Assigning ±1/2e charges to muon neutrinos may come as a surprise, because 
these are currently assumed to be neutral particles.  However, consider the 
following: 

Identifying voids as muon neutrinos, and void-pairs as electron neutrinos 
(see below), permits the theory to differentiate neutrinos into two types, 
with different properties, as experiments have demonstrated.  It is easy to 
infer that a void will be more massive than a void-pair, because 
proximate opposite-polarity voids will mutually cancel each other's 
charge-fields, and this is supported by LBL mass estimates: numu <0.27 
MeV/c²: mue <5.1 eV/c².  However, I give an argument in my book's 
cosmology section, which suggests that the mass of a ±void is more 
probably <1 meV/c².  

A half-charge void can neatly explain so-called "neutral-current 

interactions" between muon neutrinos and protons.    This explanation 
requires our later understanding of the process by which a relativistic 
±void can convert its momentum to mass in a proton's vicinity by 
converting momentarily to a c-void, thereby greatly extending interaction 
time and momentum exchange. 

A half-charge neutrino permits charge preservation when a charged-pion 

decays to half-charge muon (see below) and numu. 

A half-charge neutrino permits understanding redshift in a static 

universe (i.e. by ionization of void-pairs by photons), and background 

microwave radiation (energy released when opposite-polarity voids 
recombine), and may explain the missing solar electron neutrinos 
(photon ionization of solar nue's into numu's, with subsequent deflection 
by the earth's magnetic field).  I explain these matters in more detail, 
later. 

A half-charge neutrino is crucial toward understanding particle decay as 

an induced phenomenon, rather than spontaneous, as is currently 
believed.  In my book I show a number of decay scenarios in which 
passing half-charged voids interact with neutral defect-pairs to 
"decouple" their oppositely-charged c-voids, or interact with clusters 
containing full-charge defect-pairs of both polarities to fractionate them 
into isolated defect-pairs, or into multiple smaller clusters.  Also, in 
nuclear decay, we shall see that half-charged voids play an essential role 
in establishing a suitable charge ambience necessary to "drive" a charge-
exchange (explained in my second chapter) between a nucleon and a 
void-pair, by which a neutron is converted to proton, or proton converted 
to neutron (in nuclei). 
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Voids will exhibit spin, because an ECE of the vacated polarity will hover 

between two adjacent defect locations.  However, the action of this spin 
should differ greatly from an electron's spin.  In fact, from IPP's 
perspective, the idea of conservation of spin in particle interactions is an 
unsupportable notion. 

Finally, though possessing a half-charge, a void has almost zero 

possibility of ionizing an atom.  At low velocity its mass is so low (I argue 
it is <1 meV/c²) that very little momentum exchange can take place with 
orbital electrons, and at relativistic speeds (and high equivalent mass) it 
passes by so fast as to depart before much deflection has occurred.  

Therefore, it will be unobservable. 

Fig. 1-7 Charge Field Of A Plus Void Defect 

3) void-pairs = electron neutrinos/antineutrinos: Pairs of opposite-polarity voids

can join together in a oscillatory system.  IPP identifies these pairs as electron 

neutrinos, (or antineutrinos, since IPP asserts that there is no difference between 
them). 

Why neutral void-pairs are electron neutrinos: 

The neutral void-pair is an obvious candidate for an electron neutrino, 

since it is clearly the lightest defect system available, and has the 
capability of interacting with nucleons in a close-enough approach, as we 
shall see.  Here are some other details:   

Since opposite-polarity voids occupy mutually-exclusive lattice locations, 

and have nothing to exchange with each other, they cannot annihilate 
each other.  Therefore, we assume that isolated void-pairs, like isolated 
lone voids, have infinite life.  Both, however, can change into other defect 
types in interactions, or can annihilate by merging with suitable 
polarities of excess defects. 

Since they cannot annihilate each other, paired opposite-polarity voids 
will accelerate past each other, slow to a stop, and return, endlessly. 
Their points of maximum separation will be defined by their central 
velocities interacting against their mutual attractions.  Their maximum 



1 - 30       © 2001 Infinite Particle Physics, LLC

central velocities will clearly be limited to their mutual velocities of 
escape, while their individual central velocities will be determined by the 
manner in which they found each other's company.  Void-pairs may have 
energy levels; investigating this possibility should make an interesting 
thesis subject.  

Like lone voids, visiting void-pairs can induce decay processes.  In fact, 
many so-called "spontaneous" decays which are currently presumed to 

result in electron antineutrino emission, such as neutron decay, n  p + 

e + @nue (@ = anti), can be better understood as being initiated by a 
visiting "thermal" void-pair, catalyzed by the simultaneous presence of an 
appropriately positioned lone -void (to provide the necessary charge 
gradients to induce charge exchange fusion (replacement) of the excess -
ECE from the neutron into the -void of the nue).  This can be diagramed 
as follows, where all the charges represent defects of ±1/2e value: 

Fig. 1-8 nue Induced Decay Of Neutron To Proton 

Neutron and protons, from IPP's perspective, are structures with three 
mutually orthogonal defect-pairs, so you should interpret the central 
"[±]", above, as a defect pair comprised of opposite polarity c-voids, whose 
axis extends into the plane of the paper.  You will need to acquire more 
concepts, particularly, what charge-exchanges are, in order to 
understand the details of the above scenario, but you should understand 
that the nue disappears in the interaction to become an electron, while 
the numu continues on unchanged, but with variable change in its 
momentum depending upon the geometry of the interacting particles.  It 

is crucial to the above scenario for the neutron to be in its high mass ��

state, i.e. possessing three neutral defect-pairs with defect spacings of 
10ü, 10ü & 8ü (ü = lattice units).  This state provides the transient mass 
excess needed to convert the departing minus void to a minus excess, so 
that it can fill the nue's void.  It also provides the greatest charge 
polarization of the neutron, so its negative end has the greatest attraction 
for the plus void component of the nue.   I expect you to be puzzled by 
these new terms, but, in due time, they will become clear.  

Void-pairs have one other outstanding potential they can turn into 

neutral defect-pairs (QCD terms this structure, a "neutral pion").  This 
metamorphosis can occur, if a void-pair drifts into a center of sufficient 

unutilized spherical shrinkage (IPP's term for this is undedicated 
shrinkage).  This is one of the common ways for defect-pairs to be 
created, although many other scenarios can be imagined.  In making this 

conversion, a void-pair's mass can change from <<1 meV/c² to  136 
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MeV/c² (LBL's mass value for a neutral pion), or even higher, if more 
undedicated shrinkage is available.  This potential of void-pairs (nue's) to 
convert to defect-pairs must always be kept in mind, in analyzing particle 
interactions. 

Fig. 1-9 Charge Field Of A Void-Pair 

You will notice that the void-pair has essentially no charge field.  Thus, 
very little geometric shrinkage is needed for its formation. 

Now, let us take a small detour to bring out some other insights provided by the 
concepts of voids and void-pairs: 

The Origin Of Redshift & Background Microwave Radiation 

How can an ether theory, with non-expanding space, explain these validated
experimental findings?  Here's how: "Thermal" void-pairs are assumed to be 
abundantly distributed throughout inter-stellar space.  These low-velocity void-

pairs are very weakly bound together, and may be ionized when the center of a 

photon's ellipsoidal LD oscillation coincides with the center of mass of the void-
pair.  This process produces separated plus and minus voids, and a redshifted 
photon, since the ionization energy is subtracted from the photon's energy.  The 
photon's trajectory is not altered, because the two void components of a void-

pair have precisely the same mass.  

The opposite-polarity voids released by this redshift ionization process will 
circulate through space, and will eventually slow to a velocity which permits 
them to combine with other voids, to form new void-pairs.  This joining together 
results in an evolution of energy, because their opposite-polarity charge fields 

are largely canceled.  Here is the source of the background microwave energy,
which has a black-body character, because of the random velocities of the 
recombining voids.  The released microwave photons obviously have equal 
probability of being emitted in all directions, which nicely accounts for the 
observed angular uniformity of BMW radiation. 

For this redshift/BMW explanation to be credible, it is obvious that the 
decrement in the photon's energy per ionization event must satisfy two 
requirements: it must be proportional to the photon's energy, and it must be a 
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very small proportion of a visual light photon's total energy.  The average energy 
of the background microwave radiation (0.00046 eV) suggests that this may be 
true. 

The Origin Of Heisenberg's Indeterminacy 

From the IPP perspective, the root cause of Indeterminacy is an ambience of 

hidden variables.  Space is teeming with void-pairs, lone voids, photons, and 
grain-boundaries, and each of these may interact with a particle in a manner 
which alters the ellipticity of its hovering oscillator, and, hence, its drift speed 
and direction. 

Of these four agents of disturbance, only photons can be excluded from 

experimental situations.  If lone voids and void-pairs are assumed to be 
neutrinos, there is ample experimental evidence that they interact so little with 
matter that they can't be screened from experimental situations.  The effects of 
grain boundaries could be minimized by conducting experiments in a space ship 
stationary with respect to absolute space, but achieving this orientation would 
be difficult, since one would have to accelerate this vehicle to a speed of 
approximately 825,000 m.p.h. relative to the sun*, in precisely the right 
direction. 

* Physical Review D, 1 August 1994, p. 1234, gives a value for the drift of the solar system relative to 

the cosmic background radiation as 369.5 ± 3 km. per second.  This should, also, be a measure of 

our speed through absolute space, in the light of my redshift/BMW explanation.  Hence, if passage 

through grain boundaries is the primary cause of internal transitions in nuclei, as I will suggest, one 

could use the prolongation of I.T. half-life, both as a means of determining when the space ship is 

stationary with respect to absolute space, and as proof that grain-boundary transits are the cause of 

I.T.  A much less costly experiment, but less definitive, would be to compare I.T. half-lives at half-

year intervals when the earth's orbital velocity adds and subtracts from our velocity through 

absolute space. 

I hear you saying, at this point, "If voids and void-pairs have so little interaction 
with matter, how can they disturb the trajectories of particles?"  Here are some 
ways: 

Since IPP argues that void-pairs are capable of being ionized by photons (i.e. by 
pure ellipsoidal LD oscillations), we can presume that they will also be ionized by 
interactions with the ellipsoidal hovering LD oscillations of particles.  This 
interaction would decrease a particle's momentum very slightly, but not alter its 
direction of motion. 

Since lone voids possess a charge of ±1/2e, they will obviously be capable of 

deflecting a charged particle on close approach, if they have mass.  IPP asserts 
that they do, the evidence for this being the phenomena of redshift and 
background microwave radiation (as interpreted by IPP).  

Since both void-pairs and lone voids have the capability of collapsing in the 
presence of excess local shrinkage, their interaction masses may become orders 
of magnitude greater when they interact with particles able to donate transient 
mass to them, i.e. those comprised of defect clusters possessing multiple charge-
exchange states of differing mass values.  These donated transient mass in-
creases would greatly exaggerate the amount of trajectory disturbance from both 
ionization and charge deflection. 
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The trajectories of neutral clusters of defects will be largely immune to these 
charged neutrino encounters, but both they and charged defects and charged 

clusters will be affected by grain-boundary encounters, where they must pass 
through a narrow region of lattice dislocations and into a region of altered 
crystal orientation, and, in the process, see strong lattice irregularities resulting 
from close-packing effects.  These grain-boundary influences should result in 
permanent changes in the hovering oscillator's ellipticity*.  

* This conclusion raises the question, "What equal & opposite change occurs in the grain boundary 

to conserve momentum?"  This is particularly perplexing, if we accept that grain-boundaries possess 

only static spherical shrinkage!  Here is my current interpretation:  The spiral and step dislocations 

normally found in grain-boundaries sit in a very unstable equilibrium.  The slightest shift in ECE 

orientations in this boundary layer may increase, or decrease, the amount of static spherical 

shrinkage captured in these dislocations.  We presume, then, that the transiting hovering oscillator 

may induce either additions to, or subtractions from, the boundary layer's spherical shrinkage.  

Either of these is manifest as a shift in the magnitude & the center of the boundary layer's non-

oscillatory spherical shrinkage, which creates a moving wave of hemispherical shrinkage of precisely 

equal and opposite momentum to the hemispherical shrinkage change in the drifting defect system.  

You will perceive that it is only the completely random nature of these neutrino 
and grain-boundary encounters, some adding ellipticity, some subtracting 
ellipticity, which allows the drifting, hovering particle to arrive more, or less, in 
the direction in which the force fields had launched it, and with nearly its 

endowed momentum.  Here is the root cause of Heisenberg's Indeterminacy.   

Could Grain-Boundaries Be A Source Of Dark Matter? 

Grain-boundaries obviously require shrinkage for their formation.  Hence, they 
will shrink the space lattice, thereby creating gravitational fields which will 
extend throughout the infinite polycrystalline lattice of space.  This would seem 
to be precisely the effect needed to account for the observed mass halo around 
galaxies. 

Could Grain-Boundaries Be A Source Of Gamma-Ray Bursts? 

Suppose that a grain-boundary could develop a cavity/pyramid structure of 
substantial size due to a spiral dislocation.  Could this structure be collapsed 
into a smaller area by the passage of a high mass nuclei through its apex.  If so, 
a substantial amount of the grain-boundary's spherical shrinkage would be 
released in the form of undedicated spherical shrinkage, which would instantly 
split into two oppositely-directed high-energy photons. 

An Explanation For Quantum-Mechanical Tunneling 

If we accept that ±1/2e charge voids are billions of times more abundant than 
electrons in all experimental situations, we can certainly imagine transient 

configurations of multiple +voids within a semi-conductor junction sufficient to 
reverse the retarding field a close-by electron sees, thereby causing this 
particular electron to accelerate through the junction.  It is the exceedingly thin 
junction of a tunnel diode which permits a single transient reversal of field to 
allow the electron to penetrate to the other side and emerge with enough energy 
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to do work.  And it is the exceedingly short transit time of this effect which 
defeats the normally completely random character of electron/void interactions. 

We return, now, to our analysis of lattice defects: 

4) ± excess defects = muons: a dynamic lattice distortion pattern resulting from 
wedging a single ECE of either polarity into the neutral lattice of "empty" space.  

Excesses have a charge of ±1/2e.  Minus excesses are identified as muons; while, 

plus excesses are identified as anti-muons. 

Why a half-charge excess is a plausible muon: 

Half-charge muons and numu's explain why the muon family differs from the 
electron family, thereby sparing particle physics the embarrassment of the non-

concept, muon-ness.  The half-charge also explains why a muon never decays 

electron/gamma: it couldn't conserve charge in this postulated decay! 

Could physicists be mistaken in their belief that muons have the same charge as 
electrons?  Obviously they feel very secure in their belief that muons have unity 
charge, but this conclusion ultimately rests upon their assumption that muon 
neutrinos are neutral particles.  When one views numu's as ±1/2e charge 
particles, as IPP does, ±1/2e charge muons explain observed decays equally well. 

The Distortion Pattern Of An Excess Defect:     

It shouldn't be hard to find room in the space lattice for an extra ECE.  The 
simple cubic lattice is the least compact arrangement of touching ECEs, and 
more compactness could result from rearrangement toward the body-centered 
cubic, or, in localized regions, toward hexagonally close-packed.  So we simply 

need to find a location for an excess where its presence will lead to close-packing 
effects.  There obviously isn't room for another ECE in the center of a lattice 
cube, but there is plenty of room for one inside a supercube (any 2x2x2 lattice-
unit region of the space lattice).   There is room, because the diagonal distance 
between the centers of opposite corner ECEs of a supercube is 3.46ü (ü = symbol 
for lattice unit).  Thus, there is room for almost 1.5 more ECEs along the 
supercube diagonal, if we let the supercube exterior ECEs bulge-out somewhat. 

So let us introduce a second +ECE into this supercube interior.  What we should 
expect is that the two central +ECEs will seek an accommodation along one of 
the four super-cube diagonals, producing a rearrangement of the surrounding 
ECEs, somewhat as shown in Fig. 1-10, below (although you will see that the 
drawing fails to produce the identical center-to-center spacings of opposite-
polarity ECEs that the Theory demands).  Because the two central +ECEs are 
equally displaced from the pattern center, with nothing to distinguish one from 

the other, we will perceive the excess +ECE as losing its identity and propagating 

through the lattice as a pair of +ECEs, each contributing a +1/4e charge effect. 
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Fig. 1-10 The Geometric Shrinkage Pattern Of An Excess Defect 

When the excess defect wanders through space, we should see that either of the 
two "central" ECEs in the super-cube can become the excess ECE in the next 
defect location, which will be one of the super-cubes which interpenetrates the 
one currently occupied.  The direction of motion of the vacating ECE will 
unavoidably cause a different diagonal direction to be assumed by the two 

"central" ECEs of the next super-cube.  Thus, as the excess moves through the 
space lattice, all four supercube diagonal directions will have equal probability of 

occupancy.  This alternation of direction will cause the excess to interact with 
other defects as if it were spherically symmetrical (in a statistical sense).  I try to 
show this effect, below: 

Fig. 1-11 How The Excess Defect Achieves Spherical Symmetry 

5) ± collapsed-void defect, or ± c-void = building block of hadrons:  a dynamic 
lattice distortion pattern resulting from the collapse of a ±void, when it finds 
itself in a region of compressed space.  This pattern has orthogonal zones of 
radial expansion and radial contraction which stretch in inverse-square fashion 
toward infinity, and its formation requires exorbitant amounts of mass-energy.  
Thus, c-voids, like their QCD alter ego, quarks, are never found alone, but are 
always found joined together with another c-void, a marriage which greatly 
reduces the mass-energy requirements of their formation.  The two mating c-
voids must possess distortion patterns of opposite geometric orientation, so that 
the contraction zones of one cancel the expansion zones of the other, and vice-
versa.  This mutually canceling combination of two c-voids is called a defect-
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pair, and is of such importance to IPP that I devote the next four chapters to it.  
However, before we plunge into these details, let me tell you how I discovered the 
defect-pair idea, because this historical note may aid your comprehension of its 
structure.

How A Model Of A Bipolar Ether Made IPP Possible 

The stimulus for my new geometric approach to physics was an article, "Photons as 
Hadrons", by Frederick V. Murphy and David E. Yount, in the July 1971 issue of 

Scientific American.  This article described experiments at the Stanford Linear 
Accelerator Center in which photons billions of times more energetic than visual-light 
photons were caused to strike targets of various metals from beryllium to uranium.  
Rather than being merely reflected or absorbed, these energetic photons occasionally 
reacted with the various atomic nuclei to produce large quantities of pions.  This led the 
authors to speculate that perhaps high-energy photons took on a hadronic character, 
and transmogrified on collision with matter into vector mesons, which then decayed into 
pions within a few nuclear diameters.   My reaction was that this interpretation, while 
clearly justified, missed an obvious point: perhaps what had transmogrified was not the 

impinging photon, but, rather, space, itself!  Perhaps space is composed of the 
"ingredients" of matter, and energy somehow rearranges these ingredients of space to 
produce matter.  This simple deduction launched a chain of ideas which led to this 
book. 

Why & How The Model Was Built 

My investigations began with the notion that particles were defects in the space lattice, 

but after mulling this for a few weeks, it became clear to me that the essence of a 

particle was not its defect composition, but, rather, it was the distortion pattern it would 

induce into the space lattice.   Trying to visualize a lattice defect was hard enough, but 

how do you visualize its three-dimensional pattern stretching to infinity?   I decided to 
construct a model of bipolar space, using Q-tips, the opposite ends of which I dipped 
into bright orange and blue Hyplar paint.  After these were dry, I laboriously sewed 
groups of six like-colored ends together to produce an 7 x 7 x 7 cubic lattice, which I 
suspended inside a cubic frame by rubber bands connected to each node on the six 
faces of the cubic Q-tip structure, so that the naturally floppy structure would assume a 
cubic shape, but would be free to be distorted. 

An Experiment That Yielded The Collapsed-Void Concept 

This effort, born of my need for physical objects to manipulate to really understand 
something, proved to yield the crucial concept upon which IPP depends.  And, without 
this model of space, I am certain I would never have thought of it!  Having built the 
model, I now needed some way to simulate a defect, and what better way than to 
squeeze together diagonally-opposite nodes of one of the lattice's faces.  This action 
would be equivalent to removing one of these two like-charge entities, thereby producing 
a charge-effect in the lattice equal to, but opposite to the charge of the missing ECE. 

The pattern in the Q-tip lattice which resulted from this squeezing action was intriguing 
and provocative!  The surrounding cubic elements of the lattice became distorted such 
that along one diagonal all the face-diagonals were compressed, or contracted, while 
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along the opposite diagonal, all the face-diagonals were expanded.  If the squeezing were 
done in the center of the model, the contraction/expansion distortion extended over the 
entire model, and the distortion at the external faces of the model showed clearly that 
this contraction and expansion would extend to great distances. 

Opposite Directions Of "Squeezing" Produces Distortion Cancellation 

I soon was pinching together multiple points in the structure, observing that the total 
distortion was considerably reduced if two points along a common cardinal axis of the 
lattice were pinched together in opposite face-diagonal directions, while the distortion 
was accentuated if they were pinched in the same direction.  Something of more 
subtlety then became apparent.  If the pinchings had opposite slants, and were of the 

same color, they would be an odd number of lattice units apart; if they were of opposite
color, they would be an even number apart.  This seemed to be of noteworthy 
significance, but just how I could use it in my quest was not immediately apparent. 

The Kind Of Space-Lattice Implied By Rigid Q-Tips 

About this time I began to think more deeply about the implications of using rigid Q-tips 
to form the lattice, rather than making the connections compliant, such as with 
springs, or stretchy materials, as I had originally intended.  With rigid interconnections, 
I had made the equivalent of a crystal lattice composed of incompressible spheres all in 
contact with each other, where each node was at the center of a sphere.  Of course, this 
was true only if one limited the displacements to rather small angles from orthogonality, 
for the unsupported structure would collapse into a shallow heap. 

Implications Of A Space-Lattice Comprised Of Touching Spheres 

When I viewed my lattice as a group of touching spheres, it became evident that the 
result of pinching two nodes together was equivalent to one sphere disappearing, while 
the other moved midway between the two previously undisturbed lattice locations.  With 
a few more years of thinking, this action became my definition of a "collapsed" or c-void 
defect in the space lattice, while the reduced distortion of cardinally related pinchings of 
opposite slant, became the mechanism by which two c-void defects became married 

together, forming a defect-pair.   

Why Paired Collapsed-Void Defects Bond Together 

The reason for bonding together was not at all clear until I began to associate lattice 
distortion with lattice shrinkage, and lattice shrinkage with both energy and mass.  
When this notion is accepted, it is obvious that two isolated collapsed defects would 
create more distortion, and hence would sum to more mass-energy than two defects 
married together by distortion cancellation.  Since energy would have to be supplied to 
move paired c-voids apart, they would perhaps form a stable particle! 
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What Led To The Concept Of "Defect-Clusters" 

The notion of defects paired together in a cardinal lattice direction immediately 
suggested clusters of paired defects utilizing the other cardinal directions of a cubic 
space lattice.  Would not a proton, being the most stable of the complex particles, have 
three defect-pairs, one in each of the three cardinal directions?  This idea seemed so 
compelling, that I accepted it at once, even though I could see no means of proving it, 
and the requirement of six defects meant that each defect could possess only half an 
electron's charge, if the defect cluster were to have a unit positive charge (4 plus, 2 
minus c-voids). 

Resolving The Question Of Defect Charges 

This insight led quickly to others.  If a c-void defect is assigned half an electron charge, 
then a simple void would also have half the electron's charge, and so also would an 
excess defect which vacated a void; therefore the excess defect could not be the electron, 

as I had initially speculated.  What could create a defect having double the void defect 
charge?  Suppose we could remove an elemental charge entity (ECE) of one polarity 
from the lattice and then replace it with one of opposite polarity?  Would not each action 
produce a half-charge effect of the same polarity, leaving the lattice doubly charged?  
This out-of-place ECE, or replacement defect, became my electron.  

Finding Defect Structures For Muons And Neutrinos? 

I was elated to have found plausible defect structures for the two basic building blocks 
of matter, but perplexed about which defect structures to associate with the other three 
members of the lepton family, the muon, and the electron and muon neutrinos (the tau 
had not been postulated at that time).  I could think of only two other defect 
possibilities, the simple void defect and an excess defect.  Each of these could have only 
half the electron's charge, whereas the muon was assumed to have the same charge as 
the electron, and both neutrino types were assumed to be without charge!  I gave some 
thought to the possibility that opposite polarity voids might join together to form a 
neutral electron neutrino, and a couple of these duos might cluster together to form a 
muon neutrino.  And, perhaps, two excess defects of the same polarity might somehow 
join together to form a muon, but it seemed highly unlikely! 

An unpalatable alternative was to consider that perhaps physicists had erred in their 
charge assignments of these particles; maybe muons and neutrinos are half-charged, 
instead.  I couldn't recall anyone even speculating about this possibility, so this did not 
seem a very viable notion, and I dismissed it with lingering affection. 

These insights took just a few months, but they created a surety that I was onto 
something profoundly significant, and they gave me the motivation to devote full time to 
exploring its potential.  I had taken color stereo pictures of the distortion pattern I had 
created in my model of the space lattice, and have found these an invaluable reference, 
over the years, as I thought more deeply about collapsed voids and defect-pair clusters, 
and about other lattice defects.  And it was this great value of 3-D images to me, which 
convinced me of the necessity of including 3-D drawings, and viewing means, in my 
book. 
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A Note About The 3-D Drawings In This Chapter 

These drawings have appropriate scale to be viewed with the plastic 3-D viewer which 
accompanies this book.   Notice that the spherical nature of the ECEs is not shown.  
Instead, the two symbols (* = +ECE, o = -ECE) merely show the locations of the ±ECE 

centers.  The lines interconnecting the ECE centers have been added to aid in 
visualizing the resulting lattice distortion pattern.


